
A Formalization of Dynamic Epistemic Logic
Carnegie Mellon University

Paula Neeley

April 14, 2021

Abstract

In this thesis, I describe a formalization of various modal logics in the Lean theorem prover
that includes both model and proof theoretic results. First, I address the formalization of
model theoretic results in frame definability and undefinability, as well as proof theoretic
results in soundness and completeness for the modal systems K, T, S4, S5. Next, I address
the formalization of soundness and completeness for the epistemic systems S5 and PA (public
announcement logic without common knowledge). To the best of my knowledge, this thesis
represents the first formalization of modal model theoretic arguments and constructions
beyond completeness in Lean, and the first soundness and completeness results for public
announcement logic in any theorem prover to date. This thesis can also serve as a basis for
further formalization work in modal logic in Lean – such as the formalization of topological
semantics or other epistemic systems of knowledge and belief.

1

Chapter 1

Introduction

The distribution of information among autonomous agents, the transferral of
information between agents, and the gain and loss of information by agents over
time are critical characteristics of many environments. This is particularly true
of environments where computers are applied, since the control and distribution
of information is a primary function of computer systems and a central issue in
computer science. It can be very valuable in analyzing any such environment to
be able to represent explicitly and to reason about the state of information and
the dynamics of information.

(Davis and Morgenstern [8])

In an effort to keep up with the newly developed Airbus A320 model, rival manufacturer
Boeing upgraded the engine on its popular 737 model in 2014. This upgrade made the
engine larger, and it no longer fit under the wing in keeping with the plane’s current design.
Boeing’s solution was to move the engine on the wing so that it would be slightly higher on
the 737. Boeing called this model the 737 MAX.

Moving the engine on the 737 had a side effect, however. The center of gravity shifted, and
when the 737 MAX was in full thrust – such as during takeoff – the nose would tend to point
too far upward, leading to the possibility of stalls. Boeing came up with a workaround: they
installed software that automatically pushed the nose downward if the pilot flew the plane
at too high of an angle. Boeing called this the Maneuvering Characteristics Augmentation
System, or MCAS.

In 2018, several American pilots complained to the federal government that the 737
MAX was “nosing down.” On October 29, 2018, Lion Air Flight 610 took off from Jakarta,
Indonesia in a 737 MAX model. In the flight report, which shows the plane’s altitude over
time, one can see that the nose of the plane continually lurched downward and the plane
struggled to gain altitude. Reports show that falsely high angle of attack (AoA) inputs
were triggering MCAS, and only 12 minutes after take off the plane crashed into the Java
Sea, killing 189 people. Ethiopian Airlines Flight 302 also crashed on March 10, 2019 for
essentially the same reason, killing 157 people.

In safety critical systems such as these, formal methods can be instrumental in prevent-
ing such catastrophic outcomes. Formal methods describes the use of rigorously specified
mathematical models and mathematical proofs to ensure correct behavior in the design and
implementation of hardware, software, and autonomous systems. Mathematical proofs of

2

correctness provide an additional level of safety-checks beyond what is possible with mere
testing.

Within formal methods – and interactive theorem proving in particular – epistemic modal
logics of knowledge and belief can play a role in the verification of subsystems that transmit
or communicate information within a larger system. Think of it this way: in the same sense
that the computer scientist aims to discern how and when subsystems can avoid and detect
errors in order to continue functioning appropriately even under abnormal conditions within
a larger system, the epistemologist aims to discern how and when an agent can be said to
know some piece of information even when he or others in his group that he communicates
with may be in error about related information [15].

To develop methods of detecting and avoiding errors in both types of problems, it is
advantageous to formally define epistemic notions in terms of logic and to formally distinguish
something like knowledge from weaker concepts such as belief. Indeed, computer systems
often fail to behave as they were designed, and in these cases the subsystems that transfer
information within a larger system may be subject to the types of errors that are analogous
to false beliefs [15]. For instance, in the case of the 737 MAX, the problem was not that
the plane actually had an excessively high angle of attack, the problem was that inputs
communicated to MCAS from various subsystems gave MCAS reason to in some sense believe
that the angle was elevated and that the plane needed to nose down. Appropriately modeling
computer systems as agents communicating within a group and making use of formalizations
of epistemic modal logics as verification tools is one possible way to verify that mistakes like
these can not happen.

However, formalizations of logic and mathematics have theoretical implications beyond
their applications in software verification. In 2020, Kevin Hartnett at Quanta Magazine
published a piece called Building the Mathematical Library of the Future [10]. In it, the
author describes the growing community of Lean users devoted to the project of digitizing
mathematics. The expected benefits of digital mathematics, Hartnett writes, range from
mundane uses such as computers grading students’ math homework, reviewing journal sub-
missions in order to find errors that human reviewers might miss, and filling in the tedious
technical details of a proof, to more transcendent uses – such as utilizing machine learning
and artificial intelligence to eventually discover and prove new mathematics [10].

Indeed, if computers were to ever become proficient at proving new theorems in mathe-
matics or logic, it would be through an approach that employs machine learning paradigms,
and libraries of formalized mathematics would be fundamental for supplying the training sets
to learning algorithms. The mere reliance on mathematical definitions and the statement of
theorems for training sets would never suffice; learning algorithms need the sort of training
data that supplies every single detail in the proof of a theorem, and massive amounts of such
data, at that. But that is exactly what libraries of formalized mathematics, such as Lean’s
mathlib, provide. Indeed, Google made waves in 2019 when its deep reinforcement learning
based automated theorem prover, DeepHOL, proved over 1200 mathematical theorems us-
ing training data extracted from the theorem prover HOL Light [7]. What is more, a group
of researchers have recently started using Lean for machine learning with the creation of
LeanStep, a dataset and environment for neural theorem proving.

There is much work to be done on the part of working mathematicians and logicians to
grow the libraries of digital mathematics, since many of the most common theorem provers

3

such as Coq, Lean, Isabelle, or HOL only contain as much mathematics as an undergrad
would encounter in his or her baccalaureate education. Moreover, very few formalizations
of modal or epistemic logics exist within these most common proof assistants. This gap is
what I aim to address in this thesis.

To that end, this thesis describes a novel formalization of modal and epistemic logics
within the Lean theorem prover partially motivated by the textbook Dynamic Epistemic
Logic by van Ditmarsch, van der Hoek, and Kooi [16]. In particular, in this thesis I present:

• A deep embedding of public announcement logic without common knowledge in Lean,

• Proof theoretic contributions, including soundness and completeness results for the
modal proof systems K, T, S4, S5, as well as the S5 proof system of epistemic logic
and the PA proof system of public announcement logic without common knowledge,

• Model theoretic contributions, including frame definability and undefinability results
via invariance under disjoint unions, generated subframes, bisimulations, and surjective
bounded morphisms.

In chapter 2, I outline the theoretical foundations of modal and dynamic epistemic logic.
Chapter 3 describes the formalization of these logical theories in Lean. Chapter 4 provides a
discussion of related work, and chapter 5 addresses ideas for future work and conclusions.

4

Contents

1 Introduction 2

2 Preliminaries 7
2.1 Modal Logic . 7

2.1.1 Syntax and Semantics . 7
2.1.2 Frame Definability and Undefinability 9
2.1.3 Soundness and Completeness . 13

2.2 Dynamic Epistemic Logic . 14
2.2.1 Private and Public Announcements 15
2.2.2 Syntax and Semantics . 16
2.2.3 Soundness and Completeness . 18

3 Formalization 22
3.1 Lean . 22
3.2 Modal Logic . 23

3.2.1 Syntax and Semantics . 23
3.2.2 Frame Definability and Undefinability 25
3.2.3 Soundness and Completeness . 26

3.3 Dynamic Epistemic Logic . 30
3.3.1 Syntax and Semantics . 30
3.3.2 Soundness and Completeness . 32

4 Related Work 36

5 Conclusions and Future Work 37
5.1 Future Work . 37

5.1.1 PAL with Common Knowledge . 37
5.1.2 Topological Semantics . 38

6 Acknowledgements 39

7 Bibliography 40

Appendices 42

5

Appendix A Invariance Proofs 43
A.0.1 Invariance Under Disjoint Union . 43
A.0.2 Invariance Under Generated Submodels 45
A.0.3 Invariance Under Surjective Bounded Morphisms 46
A.0.4 Invariance Under Bisimulation . 47

Appendix B Modal Logic Proofs 48
B.0.1 Soundness for System K . 48
B.0.2 Soundness for System T . 49
B.0.3 Soundness for System S4 . 50
B.0.4 Soundness for System S5 . 50
B.0.5 Completeness for System K . 51
B.0.6 Completeness for System T . 55
B.0.7 Completeness for System S4 . 56
B.0.8 Completeness for System S5 . 57

Appendix C Dynamic Epistemic Logic Proofs 58
C.0.1 Soundness for System S5 (Epistemic Logic) 58
C.0.2 Soundness for System PA (Public Announcement Logic) 59
C.0.3 Completeness for System S5 (Epistemic Logic) 60
C.0.4 Completeness for System PA (Public Announcement Logic) 61

6

Chapter 2

Preliminaries

This chapter describes the systems of propositional modal and dynamic epistemic logic in
detail. Section 2.1 covers the theory of modal logic, which will provide a foundation for later
explicating the theory of dynamic epistemic logic in section 2.2. Throughout this chapter, I
assume the reader is familiar with classical propositional and first-order logic.

2.1 Modal Logic

Propositional modal logic is a type of logic used to qualify the truth of a proposition. For
instance, the statement, “Alice is late” can be qualified by saying, “Alice is always late,”
where the modal always functions as a qualifier to the sentence.

Modal logic was first developed by Aristotle in his modal syllogistic (in book I of the Prior
Analytics) and was further studied in both the Hellenistic and Medieval periods. However,
its modern development began with the 1910 Harvard dissertation of C.I. Lewis [11]. Our
discussion of modern modal logic will begin with the syntax and semantics, followed by model
theoretic frame definability and undefinability results, and finally proof theoretic soundness
and completeness results.

2.1.1 Syntax and Semantics

In the language of modal logic, truth qualifiers (such as always, mentioned above) are repre-
sented by adjoining special operators to propositional formulas. The most commonly used
operator is called the “necessity operator” or “box”, and it is usually denoted �. We can
thus characterize the propositional modal language with the following definition.

Definition 2.1.1 (The Language of Modal Logic) The well-formed formulas ϕ of the
propositional modal language are given recursively by the rules:

ϕ := p | ¬ϕ | ϕ ∧ ψ | �ϕ

where p ∈ prop ranges over a countable set of primitive propositions. In the discussion that
follows, this language is denoted L.

7

Traditionally, unary operators such as “box” were interpreted in an alethic sense, with
�ϕ expressing “it is logically necessary that ϕ” and its dual, ♦ϕ (an abbreviation for ¬�¬ϕ)
expressing “it is logically possible that ϕ.” However, the alethic interpretation is just one
of many, and modal logic has a variety of applications due to the fact that necessity and
possibility have a variety of interpretations. For instance, necessity can refer to epistemic
necessity (e.g., what must be the case according to what I know), doxastic necessity (...ac-
cording to what I believe), temporal necessity (...according to this point in time), or deontic
necessity (...according to my moral duties).1

All of these interpretations have in common the fact that they can be mathematically
evaluated in terms of bounded universal quantification. For example, our earlier statement
that “Alice is always late” can be thought of as expressing the fact that, in all possible
configurations of the world, Alice is late.

Such possible world semantics are a development originally due to Rudolf Carnap and
further refined by Saul Kripke. A possible world is a complete and consistent orientation
for the domain of discourse, or one way that things could be out of all the possible ways,
depending on the context.

By way of illustration, many of us believe that our world as a whole need not have been
exactly the way it is. Rather, things might have been different in a countless variety of trivial
or nontrivial ways. Our world – the actual world – is just one of many possible worlds from
which we can state propositions and ascribe truth values to them.2

In practical applications of modal logic, sets of possible worlds might represent states of a
computer program, nodes of a distributed system, or configurations of a discrete dynamical
system that evolves over time. Sets of accessible worlds might represent the subset of states
of the program that follow from performing a certain function, the reachable nodes from
a given node in the distributed system, or the next state given a single time step in the
dynamical system.

Possible world semantics are formally defined via Kripke frames. For this, we have the
following definition.

Definition 2.1.2 (Kripke Frame) A Kripke frame is a pair F = (W,R) where W denotes
a non-empty set of possible worlds and R ⊆ W ×W denotes a binary relation (called the
accessibility relation) between worlds.

We can write w1Rw2 to express the fact that world w2 is accessible from world w1, and
we can define R(w1) = {w : w1Rw} to be the set of all worlds accessible from w1.

Kripke frames enable expressions of relational properties, and they are frequently mod-
eled using relational graphs (also called directed graphs) [19]. Graphs are fundamental for
representing the behavior and transformations of systems in almost every area of computer
science, making modal logic a natural way to reason about such systems.

1Sometimes new symbols are introduced to the formal language to clarify which interpretation should be
used. For example, Bϕ might be used to express the modal sentence, “It is believed that ϕ.” Otherwise, the
conventional symbols � and ♦ are routinely used when the context is clear.

2For example, it may be true in our world that Ann lives in San Francisco. However, it is not necessarily
true that she lives in San Francisco. Perhaps if Ann took a different job in her field, or worked in a different
field, she would live in Seattle instead. In this case, we say that the possible world in which Ann lives in
Seattle is accessible from our world, the world in which Ann lives in San Francisco.

8

Reasoning about what kind of statements hold in a relational model requires a notion of
truth, however. This brings us to our next definition.

Definition 2.1.3 (Kripke Model) A Kripke model M = ((W,R), v) is a tuple where
(W,R) = F denotes a frame and v : prop → 2W denotes a valuation function over the
primitive propositions.3

The valuation v specifies the truth values of primitives at various worlds in W , so w1 ∈
v(p) means that “p is true at world w1.” With definition (2.1.3) in hand, we can extend our
possible world notion of truth for primitive propositions to all modal formulas recursively.

Definition 2.1.4 (Validity) Let x be a world in a model M = ((W,R), v). We say that
formula ϕ is valid (alternatively, true) at x in M whenever

(M,x) |= p iff x ∈ v(p)

(M,x) |= ¬ϕ iff (M,x) 6|= ϕ

(M,x) |= ϕ ∧ ψ iff (M,x) |= ϕ and (M,x) |= ψ

(M,x) |= �ϕ iff ∀y ∈ W, xRy implies (M, y) |= ϕ.

On a related note, we can also say what it means for a formula ϕ to be a semantic
consequence of a set of formulas (also called a context) Γ.

Definition 2.1.5 (Global Semantic Consequence) A formula ϕ is a global semantic
consequence of a context Γ if and only if, for any model M , if Γ is true in M (that is,
all formulas ψ ∈ Γ are true in M) then ϕ is true in M .

In the next section, I will build on these basic definitions to explicate more advanced
topics in the model theory.

2.1.2 Frame Definability and Undefinability

The definition of local validity given in definition (2.1.4) can be extended to more global
contexts. We say that a formula ϕ is valid:

• in a model M , if (M,x) |= ϕ for every x in M , denoted M |= ϕ,

• in a frame F , if (F, v) |= ϕ for every valuation v, denoted F |= ϕ,

• on a class of frames F , if F |= ϕ for every F ∈ F , denoted F |= ϕ,

• universally, if ϕ is valid on every frame, denoted |= ϕ.

One question of interest to modal logicians concerns the connection between an acces-
sibility relation and the truth of specific formulas in frames admitting that relation. For
example, consider the reflexive relation where every world is accessible from itself,

∀x ∈ W,Rxx.
3We sometimes write M = (F, v) as shorthand for M = ((W,R), v).

9

It is not difficult to check that the formula �p→ p is valid on all frames having the reflexive
relation.4 But does the converse hold? If a frame can be shown to validate this formula,
must that frame be reflexive? These questions are the subject of frame definability.

Definition 2.1.6 (Definability) A formula ϕ defines a class of frames F if, for every frame
F we have that F ∈ F if and only if F |= ϕ. That is, a modal formula defines a class if all
frames within the class satisfy the formula, and all frames outside the class can be found to
refute the formula.

For instance, the formula �p → p defines the class of reflexive frames,5 the formula
�p → ��p defines the class of transitive frames, and the formula �(�p → p) → �p (also
known as Löb’s formula) defines the class of frames that are transitive and admit no infinite
R-paths.6

In modal logic, we often think of frame classes and their associated accessibility relations
as capturing properties of directed graphs. So is every graph property definable by a modal
formula? As it turns out, the answer is no. There are countably many formulas in the
modal language, but an uncountable number of relational properties for graphs. Thus, we
say that a class of frames is undefinable if there does not exist a modal formula that defines
it. Examples of undefinable properties include the class of irreflexive frames, the class of
finite frames, and the class of frames in which every point has a predecessor.7

Proving undefinability is generally more involved than proving definability, for instead of
checking that a single modal formula defines a class of frames, we must verify that no modal
formula can define it. To prove such a general result, we rely on methods of invariance under
transformations. The idea here is that if validity of formulas ought to be preserved under
certain frame transformations, but a class of frames F is not closed under a transformation,
then F is not modally definable. I shall begin our discussion of undefinability with a few
definitions.

Definition 2.1.7 The theory of x in M is the set of all modal formulas that are true at x.
That is, ThM(x) = {ϕ : (M,x) |= ϕ}.

Definition 2.1.8 (Modal Equivalence) We say that (M,x) and (M ′, x′) are modally
equivalent if ThM(x) = ThM ′(x

′).

Undefinability theorems often make use of modal equivalence,8 but when are (M,x) and
(M ′, x′) modally equivalent? Clearly, if we can define an isomorphism f : M → M ′ that

4Proof sketch: Suppose F ∈ Fref , so ∀x ∈ W,Rxx. Also suppose x |= �p. By definition of validity for
the necessity operator, Rxy implies y |= p. Since Rxx, it follows that x |= p. Since F ∈ Fref is arbitrary, it
follows that Fref |= �p→ p.

5Proof sketch: We have already shown the forward direction, what remains to be shown is if F |= �p→ p
then F ∈ Fref . By contrapositive, suppose that F /∈ Fref , so ∃x ∈ W such that xR/x. Let v(p) = W \ {x}.
Then trivially x |= �p, but x 6|= p. It follows that F 6|= �p→ p.

6An R-path is a sequence 〈x1, x2, ..., xn〉 such that for all i ∈ {1, ..., n}, x1Rxi+1. An R-path may be
finite or infinite.

7That is, if every world x in the model is reachable from some other world y.
8To prove undefinability, we assume that some general formula ϕ defines a class, and we pick an arbitrary

model and world (M,x) within that class. We then transform the model to (M ′, x′) and show that ThM (x) 6=
ThM ′(x′), contradicting the original claim.

10

maps x to x′, then (M,x) and (M ′, x′) are modally equivalent. But the condition of being
isomorphic is stronger than necessary. On the other hand, homomorphisms are too weak
to yield invariance.9 Thus, I will introduce a series of examples of situations where modal
equivalences arise, that will later be pulled together under the common name of bisimulation
to yield invariance.

Definition 2.1.9 (Disjoint Union) Let M1 = (X1, R1, v1) and M2 = (X2, R2, v2) be such
that X1∩X2 = ∅. Then the disjoint union of M1 and M2 is the model M1tM2 = (X,R, v),
where

X = X1 ∪X2,

R = R1 ∪R2,

v(p) = v1(p) ∪ v2(p).

In other words, disjoint unions gather together all the information from two smaller
models into one bigger model, but they leave the important aspects of the two smaller
models (such as the relationship between points or the valuation of atomics) unchanged.10

Theorem 2.1.10 Modal satisfaction is invariant under disjoint unions. That is, for all
x ∈ X1, ThM1(x) = ThM1tM2(x).11

Proof 2.1.10.1 The proof proceeds by induction on ϕ. See theorem invariance dunion

in appendix A for the full proof in Lean.

Disjoint unions let us in on a secret we otherwise might have missed: modal satisfaction
is local in nature. If one evaluates a formula ϕ at world x, it should be irrelevant whether
that evaluation happens at x ∈M1 or x ∈M1 tM2.

Disjoint unions are useful for transforming smaller models into bigger ones – but to prove
a variety of invariance results, we also might need methods for doing the reverse. Indeed, it
would be helpful to know what points we could safely remove from a model without affecting
validity.

Definition 2.1.11 (Generated Submodel) Let M = (X,R, v) and x ∈ M . The gener-
ated submodel of M at x is the model

Mx = (R∗(x), R|R∗(x), v|R∗(x)),

where R∗ is the reflexive, transitive closure of R.

In other words, the generated submodel of M at x repeatedly takes all the points that x
is related to, and the points those points are related to, potentially ad infinitum, and forms
a new model with these points, Mx.

9From Blackburn’s textbook Modal Logic, “...although homomorphisms reflect the structure of the source
in the structure of the target, they do not reflect the structure of the target back in the source.” [6]

10We can more generally take the disjoint union of n many models by letting M1 be a disjoint union of
(n− 1) many models.

11By symmetry, the result also holds for all x ∈ X2.

11

Theorem 2.1.12 Modal satisfaction is invariant under generated submodels. That is, for
all y ∈ R∗(x), ThMx(y) = ThM(y).

Proof 2.1.12.1 By induction on ϕ. See theorem invariance gen submodel in appendix A
for the full proof in Lean.

Disjoint unions and generated submodels are very specific types of transformations, but
our next type of transformation – the bounded morphism – is more general. In particular, it
specifies the exact necessary and sufficient conditions for invariance in the spectrum between
homomorphic and isomorphic transformations.

Definition 2.1.13 (Bounded Morphism) Let F1 = (X1, R1) and F2 = (X2, R2). A
bounded morphism (or p-morphism) from F1 to F2 is a function f : X1 → X2 such that

(forth) if y1 ∈ R1(x1), then f(y1) ∈ R2(f(x1)),

(back) if y2 ∈ R2(f(x1)), then there exists a y1 ∈ R1(x1) such that f(y1) = y2.

Theorem 2.1.14 If f is a surjective bounded morphism from F1 to F2, then if F2 6|= ϕ,
then also F1 6|= ϕ.

Proof 2.1.14.1 By induction on ϕ. See theorem pull back in appendix A for the full proof
in Lean.

Corollary 2.1.14.1 If F is a class of frames such that F1 ∈ F and F2 6∈ F , then if there
exists a surjective, bounded morphism from F1 to F2, then F is not definable by a formula
in the basic modal language.

Proof 2.1.14.2 See theorem invariance pull back in appendix A for the full proof in
Lean.

Historically, these constructions were used in modal logic for over a decade before the
unifying concept of bisimulation was introduced. Bisimulations characterize when two states’
atomic valuations and relationship to other points can be matched up. In other words, when
two states “look the same” and “act the same.” As it turns out, disjoint unions, generated
submodels, and surjective bounded morphisms are all examples of bisimulations.

Definition 2.1.15 (Bisimulation) Let M1 = (X1, R1, v1) and M2 = (X2, R2, v2). A bisim-
ulation between M1 and M2 is a binary relation ∼ ⊆ X1 × X2 such that for x1 ∈ X1 and
x2 ∈ X2, if x1 ∼ x2, then

(base) for all p ∈ prop, x1 ∈ v1(p) iff x2 ∈ v2(p),
(forth) for all y1 ∈ R1(x1), there exists a y2 ∈ R2(x2) such that y1 ∼ y2,

(back) for all y2 ∈ R2(x2), there exists a y1 ∈ R1(x1) such that y1 ∼ y2.

Theorem 2.1.16 Modal satisfaction is invariant under bisimulation. That is, if ∼ is a
bisimulation between M1 and M2 and x1 ∼ x2, then ThM1(x1) = ThM2(x2).

Proof 2.1.16.1 By induction on ϕ. See theorem invariance bisim in appendix A for the
full proof in Lean.

This concludes the discussion of modal definability and undefinability. In the next section,
I will discuss modal soundness and completeness results.

12

2.1.3 Soundness and Completeness

So far I have characterized modal logic from a model theoretic perspective. Let us now
turn our attention to the proof theoretic perspective via the study of axiomatic systems and
deduction. I shall begin by defining the axioms and rules of inference to be added to the
classical propositional calculus in order to build a modal calculus. I will follow this discussion
with modal soundness and completeness results.

Definition 2.1.17 (System K) The modal axiom system K is comprised of

• all instances of propositional tautologies,

• all instances of the scheme �(ϕ→ ψ)→ (�ϕ→ �ψ), (distribution)

• from ϕ and ϕ→ ψ, we may infer ψ, (modus ponens)

• from ϕ, we may infer �ϕ. (necessitation)

The distribution axiom scheme, �(ϕ → ψ) → (�ϕ → �ψ) is often referred to itself as K.
Other well-known axiom schemes are:

T : �ϕ→ ϕ,
4 : �ϕ→ ��ϕ,
5 : ♦ϕ→ �♦ϕ.

which form the axiom systems (systems in sans-serif, axioms in italics):

T := K + T,
S4 := T + 4,
S5 := S4 + 5.

These axioms (the propositional tautologies, as well as K, T, 4, and 5) taken together
with the rules of inference (modus ponens and necessitation) can be used to derive additional
formulas via the method of deduction.

Definition 2.1.18 (Deduction) Given any axiom system AX, a deduction from AX is a
finite sequence of formulas ϕ1, ϕ2, ..., ϕn such that, for all 1 ≤ i ≤ n, either:

• ϕi is an axiom,

• ϕi follows from ϕj, ϕk for some j, k ≤ i by modus ponens,

• ϕi follows from ϕj for some j ≤ i by necessitation.

We denote a deduction from AX of ϕn by `AX ϕn and say that ϕn is provable in system AX.

As is common in all systems of logic, we are concerned with whether the notion of
deduction given in definition (2.1.18) coincides with the notion of validity given in definition
(2.1.4). That is, whether the formulas we can derive are actually true, and whether we can
derive all the true formulas. For this we have the following theorems.

13

Theorem 2.1.19 (Soundness) The axiom system K over the language L is sound with
respect to the class of all frames. That is, `K ϕ implies |= ϕ.

Proof 2.1.19.1 See theorem soundness in appendix B for the full proof in Lean.

Theorem 2.1.20 (Completeness) The axiom system K over the language L is complete
with respect to the class of all frames. That is, |= ϕ implies `K ϕ.

Proof 2.1.20.1 See theorem completeness in appendix B for the full proof in Lean.

In general, axiom systems may be sound or complete with respect to a class of frames.
For instance, T is sound and complete with respect to the class of reflexive frames, S4 is
sound and complete with respect to the class of reflexive and transitive frames, and S5 is
sound and complete with respect to the class whose relation is an equivalence relation. Given
an arbitrary axiom system AX and a class of frames F , we say that AX is sound and complete
with respect to F if

`AX ϕ ⇐⇒ F |= ϕ.

With the basics of modal logic having been outlined, one final question that may arise for
the mature reader is the question of where modal logic fits in with respect to propositional
logic and first-order logic.

The bounded universal quantification intrinsic to the clause for “box” in the definition
of validity (2.1.4) means that modal logic can be interpreted in first order logic by inter-
preting the boxes with quantifiers over worlds. However, part of the reason modal logic is
so interesting is because of its expressive power, for the converse does not hold: we cannot
interpret first-order logic in modal logic. In sum, modal logic is closer to first-order logic than
propositional logic in terms of expressivity, yet it preserves the computational complexity of
propositional logic in terms of decidability.

Although I will not discuss the expressivity or decidability of modal logic in detail here,
the interplay between these two features in modal logic can be understood through two-
variable first-order logic and its relation to modal logic. The reader is encouraged to reference
[1] and [18] for more on this topic.

2.2 Dynamic Epistemic Logic

We now turn our attention to one of the most active sub-fields of research within modal
logic, dynamic epistemic logic. Here, the modal operator “box” takes on an epistemic in-
terpretation – usually denoted Kaϕ – meaning, “agent a knows that ϕ”. Robert Stalnaker
aptly presents this epistemic interpretation in his paper, On Logics of Knowledge and Belief
[15] when he writes,

Just as necessity is truth in all possible worlds, so knowledge is truth in all
epistemically possible worlds. The assumption is that to have knowledge is to
have a capacity to locate the actual world in logical space, to exclude certain
possibilities from the candidates for actuality. The epistemic possibilities are
those that remain after the exclusion, those that the knower cannot distinguish
from actuality.

14

In addition to the epistemic interpretation of “box”, action modalities of the form [ϕ]ψ
are added to the language as a way to capture communication events, where in this case [ϕ]ψ
means “after ϕ is communicated, ψ holds.” This construction provides a logical framework
for reasoning about how knowledge changes for systems of agents as communication events
occur.

However, before I introduce the full logical framework, it is important to clarify what ex-
actly is meant by the terms “knowledge”, “agents”, “change”, and “communication events.”

In this context, knowledge signifies any related body of data that can be held by an
agent or subject. This is admittedly a loose characterization of knowledge, philosophically
speaking. Nonetheless, it will prove fruitful here in that it will allow us to apply the theory
of dynamic epistemic logic to a wide variety of agents capable of such unrefined and diverse
forms of knowledge. As such, knowledge could be thought of as something more like infor-
mation, and the two terms may be used interchangeably in the discussion that follows. What
is important to grasp about this characterization of knowledge (or information) is that it is
a coherent body of data, rather than a jumble of miscellaneous facts.

Because knowledge is taken to have such wide scope, the term agents may on one end
of the spectrum refer to human beings replete with complex mental activity. On the other
end of the spectrum agents may represent something more abstract, such as vertices in a
social network or servers in a distributed system. Agents could also represent self-driving
cars that collect data from their environment and make decisions about how to best interact
with that environment and other vehicles on the road.12 What unites all of these instances
of agenthood is the fact that information is relative to an agent, and different agents possess
different information to be shared with other agents.

Finally, the change of information that is of interest within dynamic epistemic logic – and
that which adds a dynamic aspect to the epistemic framework – occurs via communication
events between agents. An important aspect of these communication events is that they
usually do not change the facts under consideration, but rather the knowledge that agents
hold about these facts. This results in what is called epistemic updates for agents, or formulas
that become true or false after communication events.13 The theory that concerns knowledge
change for agents due to a change in underlying facts is beyond the scope of this thesis, as
well as the theory of dynamic epistemic logic more broadly.

2.2.1 Private and Public Announcements

Numerous forms of communication are studied withing the dynamic epistemic framework,
ranging from public communications to private. In the literature such communications are
commonly called announcements.

For example, a private announcement ϕ is one that is made to a single agent a. No
other agents within the group of agents know the contents of ϕ, and more importantly, other
agents may not even consider it possible that a knows ϕ either.

12Or interconnected subsystems of a larger system, as was seen in the example in the introduction.
13One example of an update is the unsuccessful update. If someone publicly announces to a group, p∧¬Kap,

i.e.,“p is true, but Alice does not know it”, then this announcement immediately becomes false if Alice is
a member of the group. For indeed, through the announcement itself, Alice comes to know that p is true.
This is in contrast to the successful update in which some formula ϕ remains true after it is announced.

15

In real world applications, private communications can occur in fields such as computer
security and encryption. For instance, one might want to ensure that a key cannot be
decrypted by an intruder. This is equivalent in the language of dynamic epistemic logic to
asking what an outside agent can know based on the private communication between the
agents with the keys, as well as existing facts about the world, such as the strengths and
weaknesses of the underlying security system.

On the other hand, public announcements are truthful communications made to all mem-
bers in a group. This fragment of dynamic epistemic logic (called public announcement logic)
is useful for one because it provides a way to reason about problems concerning the common
knowledge and distributed knowledge of a group.

For example, common knowledge of ϕ means that every agent in a given group of agents
G knows that ϕ, and everybody knows that everybody knows ϕ, and so on, ad infinitum.
Alternatively, distributed knowledge of ϕ means that, if all agents in a group G were to pool
their knowledge, then together they would collectively know ϕ. To formally reason about
common or distributed knowledge, new symbols CGϕ and DGϕ are added to the language
of public announcement logic, along with semantic interpretations of their meaning and
syntactic rules for their use.

However, even if common or distributed knowledge are not taken into account, many in-
teresting questions can be posed and answered via public announcement logic.14 Moreover,
public announcement logic without common knowledge is interesting for theoretical reasons
relating to expressivity and completeness, which I shall expound upon shortly. Thus, my
primary focus in this part of the thesis centers around formalizing the version of public an-
nouncement logic without common knowledge. To the syntax and semantics of the language
we now turn.

2.2.2 Syntax and Semantics

The language of public announcement logic without common knowledge (henceforth referred
to simply as public announcement logic or PAL) rests on the language of epistemic logic. In
order to develop the theory of PAL, I shall draw parallels between the two systems in the
section that follows by stating all of the essential definitions of the two systems in tandem.

To begin, the language of epistemic logic is essentially the same as the language of basic
modal logic, with the exception that the “box” operator is denoted K, and there are multiple
instances of these operators, one for each agent a.

Definition 2.2.1 (The Language of Epistemic Logic) The well-formed formulas ϕ of
epistemic logic are given recursively by the following rules:

ϕ := p | ¬ϕ | ϕ ∧ ψ | Kaϕ

where a ∈ A ranges over a finite set of agents and p ∈ prop ranges over a countable set of
primitive propositions. In the discussion that follows, this language is denoted LK .

14For example, PAL’s most common motivational examples include the Muddy Children Puzzle, the Sum
and Product Puzzle, and Cheryl’s Birthday Puzzle.[4]

16

To define the language of PAL, we include a new symbol, [], used to denote communi-
cation events. This language is specified as follows.

Definition 2.2.2 (The Language of Public Announcement Logic) The well-formed for-
mulas ϕ of public announcement logic are given recursively by the following rules:

ϕ := p | ¬ϕ | ϕ ∧ ψ | Kaϕ | [ϕ]ψ

where a ∈ A ranges over a finite set of agents and p ∈ prop ranges over a countable set of
primitive propositions. In the discussion that follows, this language is denoted LK[].

Since the knowledge operator is indexed by agents in both languages, the binary relation
RA must be as well. That is, instead of a single binary relation over all agents, there exists
a binary relation RA(a) ⊂ W ×W for every a ∈ A, as seen in the following definitions of
Kripke frames and Kripke models15

Definition 2.2.3 (Kripke Frame) Given a finite set of agents A, a Kripke frame is a pair
F = (W,RA) where W denotes a non-empty set of possible worlds and RA ⊆ W×W denotes
a function that yields for every a ∈ A an accessibility relation RA(a) ⊂ W ×W . Note that
we will often write Ra rather than RA(a), and xRay rather than xRA(a)y.

Definition 2.2.4 (Kripke Model) Given a finite set of agents A and a countable set of
primitive propositions prop, a Kripke model M = ((W,RA), v) is a tuple where F = (W,RA)
denotes a frame and v : prop→ 2W denotes a valuation function over the primitive propo-
sitions.

Next, validity for epistemic logic essentially follows from validity for basic modal logic,
the only exception being that it is now indexed by agents.

Definition 2.2.5 (Validity for Epistemic Logic) Let x be a world in a model M =
((W,RA), v). We say that formula ϕ is valid for agent a at world x in M whenever

(M,x) |= p iff x ∈ v(p)

(M,x) |= ¬ϕ iff (M,x) 6|= ϕ

(M,x) |= ϕ ∧ ψ iff (M,x) |= ϕ and (M,x) |= ψ

(M,x) |= Kaϕ iff ∀y ∈ W, xRay implies (M, y) |= ϕ

On the other hand, validity for public announcement logic is more complicated. Public
announcement logic is an example of a relation-changing logic. That is, it is a logic with the
ability to update a model while evaluating the truth of a formula [9]. Relation-changing logics
are interesting because they allow us to assess how a relational structure evolves through the
application of various operations – in this case, the announcement formula [ϕ]ψ. To more
formally describe how models evolve via announcements, we have the following definition.

15Definitions 2.2.3 and 5.1.2 apply identically to both the languages of epistemic logic and public an-
nouncement logic.

17

Definition 2.2.6 (Validity for Public Announcement Logic) Let x be a world in a
model M = ((W,RA), v). We say that formula ϕ is valid for agent a at world x in M
whenever

(M,x) |= p iff x ∈ v(p)

(M,x) |= ¬ϕ iff (M,x) 6|= ϕ

(M,x) |= ϕ ∧ ψ iff (M,x) |= ϕ and (M,x) |= ψ

(M,x) |= Kaϕ iff ∀y ∈ W, xRay implies (M, y) |= ϕ

(M,x) |= [ϕ]ψ iff (M,x) |= ϕ implies (M |ϕ, x) |= ψ

where M |ϕ = (W ′, R′a, v
′) is such that

W ′ = JϕKM
R′a = Ra ∩ (JϕKM × JϕKM)

v′(p) = v(p) ∩ JϕKM

In essence, the public announcement of [ϕ] is a state transformer; it restricts the set of
states to only those states where ϕ holds. The dual of [ϕ] is denoted 〈ϕ〉, and its semantics
are given by:

(M,x) |= 〈ϕ〉ψ iff (M,x) |= ϕ and (M |ϕ, x) |= ψ.

As mentioned previously, public announcement logic is interesting for theoretical reasons
relating to expressivity and completeness. These ideas will be further expounded in the
following section.

2.2.3 Soundness and Completeness

The axiom system PA for public announcement logic rests on the axiom system S5 for
epistemic logic indexed over agents, which is given by the following definition.

Definition 2.2.7 (System S5) Given a set of agents A and primitive propositions P , the
axiomatic system S5 is comprised of:

• all instances of propositional tautologies,

• all instances of the schemes:

Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ), (distribution of Ka over →)

Kaϕ→ ϕ, (truth)

Kaϕ→ KaKaϕ, (positive introspection)

¬Kaϕ→ Ka¬Kaϕ, (negative introspection)

• from ϕ and ϕ→ ψ, we may infer ψ, (modus ponens)

• from ϕ, we may infer Kaϕ. (necessitation)

System S5 contains several axioms schemas regarding knowledge that should hopefully
accord with our intuitions. For example, truth says that if an agent knows ϕ, then ϕ

18

is true; and positive introspection says that if an agents knows ϕ, then they know
that they know ϕ. The axiom for negative introspection is much more debated within
the literature; some formal epistemologists argue that it represents too idealized a form of
knowledge, as pointed out by Stalnaker [15]. However, the authors of the textbook Dynamic
Epistemic Logic [16] chose to take this axiom, so my formalization follows suit.

It is also worth noting the necessitation rule here. Necessitation may not seem entirely
plausible when interpreted over knowledge and agents. Indeed, as Stalnaker [15] again points
out, no matter how epistemically possible worlds are selected, all of the logical truths will be
true in them. By necessitation then, all knowers would hence know all logical truths, which
seems absurd. However, others argue that it is indeed a plausible rule to have in a proof
system, as it formally echoes the idea that if something is demonstrable by logical reflection
alone then one can necessarily know it is true.

In addition to these axioms, the system PA contains additional axioms for proving for-
mulae involving announcements. These axioms govern how announcement interacts with
the other connectives. For example, the last axiom (announcement composition) is
important because it reduces a composition of two announcements into a conjunction of
announcements, so it is helpful when deriving theorems involving multiple announcements.

Definition 2.2.8 (System PA) Given a set of agents A and primitive propositions P , the
axiomatic system PA is comprised of:

• all instances of propositional tautologies,

• all instances of the schemes:

Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ), (distribution of Ka over →)

Kaϕ→ ϕ, (truth)

Kaϕ→ KaKaϕ, (positive introspection)

¬Kaϕ→ Ka¬Kaϕ, (negative introspection)

[ϕ]p↔ (ϕ→ p), (atomic permanence)

[ϕ]¬ψ ↔ (ϕ→ ¬[ϕ]ψ), (announcement and negation)

[ϕ](ψ ∧ χ)↔ ([ϕ]ψ ∧ [ϕ]χ), (announcement and conjunction)

[ϕ]Kaψ ↔ (ϕ→ Ka[ϕ]ψ), (announcement and knowledge)

[ϕ][ψ]χ↔ [ϕ ∧ [ϕ]ψ]χ, (announcement composition)

• from ϕ and ϕ→ ψ, we may infer ψ, (modus ponens)

• from ϕ, we may infer Kaϕ. (necessitation)

Recall from section 2.1.3, system S5 over the basic modal language L is sound and
complete with respect to the class of frames satisfying an equivalence relation, Feq (see
theorem S5 soundness in section 3.2 and theorem S5 completeness in appendix B for the
full proof in Lean). Likewise, the same axiomatic system S5 in the epistemic language
LK indexed over agents is sound and complete with respect to the class Feq (see proofs
soundnessS5 and completenessS5 in appendix C for the full proof in Lean). What may be
surprising, however, is that the axiomatic system PA over the public announcement language
LK[] is also sound and complete with respect to the exact same class Feq.

19

Theorem 2.2.9 (Completeness) The axiom system PA over the language LK[] is sound
and complete with respect to the class of frames Feq whose relation is an equivalence relation.
That is, `PA ϕ iff Feq |= ϕ.

Proof 2.2.9.1 See theorem soundnessPA in appendix C and completenessPA in section
3.3 for the full proofs in Lean.

Why is it that these two axiom systems, one an extension of the other, are sound and
complete with respect to the same class of frames? The reason is because the languages LK

and LK[] have the same expressive power. That is, for any formula in LK[], we can find a
formula in LK that is equivalent to it (the converse is trivial). Thus, to prove completeness for
system PA with respect to the class of frames Feq, it suffices to define a translation function
t : LK[] → LK and show that every formula is provably equivalent to its translation. The
result then follows from completeness of S5 with respect to Feq over the epistemic language
LK .

This translation function is defined as follows.

Definition 2.2.10 (Translation) The translation t : LK[] → LK is defined recursively as:

t(p) = p

t(¬ϕ) = ¬t(ϕ)

t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ)

t(Kaϕ) = Kat(ϕ)

t([ϕ]p) = t(ϕ→ p)

t([ϕ]¬ψ) = t(ϕ→ ¬[ϕ]ψ)

t([ϕ](ψ ∧ χ)) = t([ϕ]ψ ∧ [ϕ]χ)

t([ϕ]Kaψ) = t(ϕ→ Ka[ϕ]ψ)

t([ϕ][ψ]χ) = t([ϕ ∧ [ϕ]ψ]χ)

As stated above, we intend to show that every formula is provably equivalent to its
translation. The proof proceeds by induction, but not by induction on formulas as one
might assume. This will not suffice for the case at hand, for during the inductive step of
a proof by induction on formulas, one would need the inductive hypothesis for subformulas
of that formula. However, ([ϕ]ψ ∧ [ϕ]χ) is not a subformula of [ϕ](ψ ∧ χ), for example.
So instead, we must define a complexity measure and proceed by proof by induction on
complexity of formulas.

Definition 2.2.11 (Complexity) The complexity c : LK[] → N is defined recursively as:

c(p) = 1

c(¬ϕ) = 1 + c(ϕ)

c(ϕ ∧ ψ) = 1 + max(c(ϕ), c(ψ))

c(Kaϕ) = 1 + c(ϕ)

c([ϕ]ψ) = (4 + c(ϕ)) · c(ψ)

20

With the complexity measure in hand, we can show that each formula is provable equiv-
alent to its translation.

Lemma 2.2.12 For all formulas ϕ ∈ LK[] it is the case that

` ϕ↔ t(ϕ).

Proof 2.2.12.1 By induction on complexity c(ϕ). See proofs equiv translation aux and
equiv translation in appendix C.

This completes chapter 2. In the next chapter, I will describe the formalization in Lean.

21

Chapter 3

Formalization

This chapter presents the formalization in the Lean theorem prover of the modal theory
explored in chapter 2. In the following sections, Lean code will be used to illustrate design
choices as well as to give a feel for what mathematical definitions and proofs look like in
Lean compared to those that are typeset or written by hand.

This formalization assumes a variety of general mathematical results that depend on some
data structures not present in the standard Lean library. For this reason, I shall import the
library of formalized mathematics for Lean called mathlib [13].

This project contains about 5000 lines of code, and all proofs have been typechecked with
Lean 3.18.4. The reader is encouraged to consult the source code that is described in this the-
sis, which is publicly available online at: https://www.github.com/paulaneeley/modal.

To begin, section 3.1 provides a high-level overview of the Lean theorem prover. Next,
section 3.2 details the definitions and proofs pertaining to modal definability and undefin-
ability, as well as Henkin-style completeness proofs for the propositional modal logics K, T,
S4, and S5.1 Finally, section 3.3 details the completeness proof by translation for public
announcement logic.

3.1 Lean

Lean is an open source proof assistant first developed in 2013 by Leonardo de Moura at
Microsoft Research. Lean combines interactive theorem proving with automated reasoning
capabilities in a dependently typed programming language called the Calculus of Inductive
Constructions. Since its inception, the list of developers and contributors to Lean has grown
to produce a thriving online community of members.

At its core, Lean consists of a general specification language and axiomatic framework.
As such, users have the flexibility to embed domain-specific logics within the host language
of Lean as collections of definitions and formulas. Embeddings may be deep or shallow:
shallow embeddings provide syntactic translations ideal for proving results in a logic’s object
language. Conceptually, this type of embedding describes the semantics of a given domain
in a data type in order to provide a fixed interpretation for it. A deep embedding, on the

1A proof of completeness for a given logic is called a Henkin-style proof whenever it relies on noncon-
structive methods to build models out of maximal consistent sets of formulas [5].

22

other hand, enable proofs of metalogical results (such as cut-elimination or completeness) via
proof by structural induction on abstract syntax trees. Conceptually, this type of embedding
describes the semantics of the operations on the domain, enabling variable interpretations.
Embedding a logic within a specification language such as Lean can serve many purposes,
such as formally reasoning about the correctness of applications of that logic through the
use of interactive theorem proving.

Lean has become popular among working mathematicians as an interactive theorem
prover in part for its ability to support classical as well as constructive reasoning. Classical
reasoning and non-computable constructions are ubiquitous in this formalization, such as in
the use of Zorn’s lemma in the proof of Lindenbaum’s lemma for completeness.

Theorem proving in Lean adheres to two styles. The first involves the use of proof terms,
which are representations of mathematical proofs that can be constructed directly in the
functional language [2]. Alternatively, proofs can be constructed using tactics, which are
imperative commands that instruct or tell Lean how to build a proof. Lean is also a flexible
environment in that proof terms and tactics can be mixed together in the same proof. Many
of the proofs in this formalization are tactic-style proofs, but this is merely a matter of
preference for me as a Lean user.

3.2 Modal Logic

3.2.1 Syntax and Semantics

To define the language of modal logic in Lean, I have chosen to work with the atomic formula
falsum (⊥) and a countable set of propositional variables indexed by the natural numbers
(pn). In addition, I have chosen to work with a non-minimal set of connectives that includes
conjunction (&) implication (⊃), and necessitation (�). While I am aware that a minimal
set of connectives would have sufficed (for example, either & or ⊃, but not both), and that
the use of a non-minimal set requires one to prove an additional clause in proofs that rely on
induction on formulas, certain very complex proofs were actually made simpler by including
this extra connective, so this trade-off was made. Hence, the language of basic modal logic
is given by the following inductive definition in Lean.

inductive form : Type

| bot : form

| var (n : nat) : form

| and (ϕ ψ : form) : form

| impl (ϕ ψ : form) : form

| box (ϕ : form) : form

Using one of the five constructors above (bot, var, and, impl, and box) is the only way
to construct a term of type form. Other logical connectives such as ∨ and ¬ are defined as
abbreviations in the usual way based on these core connectives, where

notation ‘¬‘ ϕ := form.impl ϕ form.bot

notation ϕ ‘∨‘ ψ := ((¬ϕ) ⊃ ψ)

23

Because the theorems we want to prove are metatheoretical, I chose to encode the syntax
using a deep embedding rather than a shallow one. This allows us to prove metatheorems
via structural induction on abstract syntax trees.

In terms of the basic semantics, Kripke frames are formalized in Lean as structures.
These are non-recursive inductive types with only one constructor. In this instance, a frame

is a 3-tuple consisting of states of some type, a hypothesis that the states are non-empty,
and a binary relation between states.2

structure frame :=

(states : Type)

(h : inhabited states)

(rel : states → states → Prop)

Since many of the model-theoretic results in this formalization centered around frame
definability and undefinability, I chose not to formally define Kripke models in Lean. Instead,
when one desires to work with models rather than frames in this formalization, one can merely
define a valuation function v : nat → f.states → Prop that corresponds to whatever
term f : frame is in the current context.

This concept is nicely illustrated by the following definition. The notion of validity of a
formula at a world in a model is recursively defined by cases in Lean as a function which
takes a frame f and a valuation v as inputs and returns a function f.states → form →
Prop.

def forces (f : frame) (v : nat → f.states → Prop) :

f.states → form → Prop

| x (bot) := false

| x (var n) := v n x

| x (and ϕ ψ) := (forces x ϕ) ∧ (forces x ψ)
| x (impl ϕ ψ) := (forces x ϕ) → (forces x ψ)
| x (box ϕ) := ∀ y, f.rel x y → forces y ϕ

Next, we can define the global semantic consequence from a set of formulas (or context)
Γ. A context is defined in Lean using sets, which in this case are functions of type form →
Prop as follows.

@[reducible] def ctx : Type := set form

notation Γ ‘∪’ ϕ := set.insert ϕ Γ

With contexts defined, we can say what it means for a formula ϕ to be a global semantic
consequence of a set of formulas Γ in Lean with the following two definitions. The first,
forces context says that every formula ϕ in Γ is true at every world x in a frame f. The
definition global sem csq then says that if every formula in Γ is true for some frame f and
valuation v, then the truth of ϕ follows at every world x in f.

def forces_ctx (f : frame) (v : nat → f.states → Prop) (Γ : ctx) :=

∀ ϕ, ∀ x, ϕ ∈ Γ→ forces f v x ϕ

2For instance, when one instantiates a term of type frame, one must provide a type for the states, a proof
that the type is non-empty (i.e., inhabited), and a relation between the states.

24

def global_sem_csq (Γ : ctx) (F : set frame) (ϕ : form) :=

∀ f ∈ F, ∀ v, forces_ctx f v Γ → ∀ x, forces f v x ϕ

3.2.2 Frame Definability and Undefinability

To extend the definition of local validity given above to more global contexts, in Lean we
can say that a formula ϕ is valid:

• In a model M , if

def m_valid (ϕ : form) (f : frame) (v : nat → f.states → Prop) :=

∀ x, forces f v x ϕ

• In a frame F , if

def f_valid (ϕ : form) (f : frame) :=

∀ v x, forces f v x ϕ

• On a class of frames F , if

def F_valid (ϕ : form) (F : set frame) :=

∀ f ∈ F, ∀ v x, forces f v x ϕ

• Universally, if

def u_valid (ϕ : form) :=

∀ f v x, forces f v x ϕ

The definitions of definability and undefinability are written in Lean almost as simply
and straightforwardly as they are by hand (see the informal definitions in section 2.1.2).
Indeed, for definability and undefinability, we have,

def defines (ϕ : form) (F : set frame) :=

∀ f, f ∈ F ↔ f_valid ϕ f

def undefinable (F : set frame) :=

∀ ϕ, ¬ defines ϕ F

We can also define the theory at a world in a model via the following definition.

def theory_at (f : frame) (v : nat → f.states → Prop)

(x : f.states) : set form := { ϕ : form | forces f v x ϕ}

Although these definitions are written in Lean quite succinctly, the definitions and
proofs of invariance under disjoint union, generated submodels, bisimulation, and surjective
bounded morphisms are somewhat lengthy. The reader is encouraged to consult appendix
A or the source code on Github for the full definitions and proofs.

25

3.2.3 Soundness and Completeness

We now have a rich semantics for modal logic formalized in Lean. In order to prove soundness
and completeness results for various proof systems with respect to their corresponding classes
of frames, I need to provide definitions of these proof systems in Lean, as well as to explain
the notion of provability in Lean. In addition, I must define what it means for a formula ϕ
to be provable from a set of formulas Γ.3

I will begin with the basic proof system K, which is defined inductively in Lean as follows.
Here is how to read the first case, ax: given a context AX, a formula ϕ, and the hypothesis
that ϕ is in AX, then one can construct a term of type prfK AX ϕ, which represents an
object-language proof of ϕ. Likewise, the second case, pl1, says that given a context AX and
formulas ϕ and ψ, then one can construct a term of type prfK AX ϕ ⊃ (ψ ⊃ ϕ). The other
axiomatic cases follow similarly. The rule of inference, mp, is read as follows: given a context
AX, formulas ϕ and ψ, and the hypotheses hpq : prfK AX (ϕ ⊃ ψ) and hp : prfK AX ϕ,
then one can construct a term of type prfK AX ψ. The other rule of inference, nec follows
similarly.

inductive prfK : ctx → form → Prop

| ax {AX} {ϕ} (h : ϕ ∈ AX) : prfK AX ϕ
| pl1 {AX} {ϕ ψ} : prfK AX ϕ ⊃ (ψ ⊃ ϕ)
| pl2 {AX} {ϕ ψ χ} : prfK AX (ϕ ⊃ (ψ ⊃ χ)) ⊃ ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ χ))
| pl3 {AX} {ϕ ψ} : prfK AX (¬ϕ ⊃ ¬ψ) ⊃ ((¬ϕ ⊃ ψ) ⊃ ϕ)
| pl4 {AX} {ϕ ψ} : prfK AX ϕ ⊃ (ψ ⊃ (ϕ & ψ))
| pl5 {AX} {ϕ ψ} : prfK AX (ϕ & ψ) ⊃ ϕ
| pl6 {AX} {ϕ ψ} : prfK AX (ϕ & ψ) ⊃ ψ
| pl7 {AX} {ϕ ψ} : prfK AX (¬ϕ ⊃ ¬ψ) ⊃ (ψ ⊃ ϕ)
| kdist {AX} {ϕ ψ} : prfK AX �(ϕ ⊃ ψ) ⊃ ((�ϕ) ⊃ (�ψ))
| mp {AX} {ϕ ψ}

(hpq: prfK AX (ϕ ⊃ ψ))
(hp : prfK AX ϕ) : prfK AX ψ

| nec {AX} {ϕ}
(hp: prfK AX ϕ) : prfK AX �ϕ

Remember that back in definition 2.1.17 we stated that the proof system K contained all
instances of propositional tautologies. In Lean however, there is no way to define all instances
of propositional tautologies within the proof system prfK. Instead, I have chosen a small set
of axioms, pl1-pl7, from which all propositional tautologies of classical logic follow. For a
complete listing of all the propositional tautologies that I proved in the object language, see
the file syntaxlemmas.lean.

To build the proof systems T, S4, and S5 from K, we have the following simple definitions
in Lean.

3A context Γ could constitute hypotheses from which we aim to prove a given formula ϕ. On the other
hand, a context could represent additional axioms from which we can expand the system K to the systems
T, S4, or S5.

26

def T_axioms : ctx := {ϕ : form | ∃ ψ, ϕ = (�ψ ⊃ ψ)}
def S4_axioms : ctx := T_axioms ∪ {ϕ : form | ∃ ψ, ϕ = (�ψ ⊃ �(�ψ))}
def S5_axioms : ctx := T_axioms ∪ {ϕ : form | ∃ ψ, ϕ = (♦ψ ⊃ �(♦ψ))}

Since the proof systems are defined inductively in Lean, there is no need to formally define
a notion of deduction in Lean as we did in the informal theory (see definition 2.1.18 in section
2.1). Instead, provability of the axiom systems in Lean is informally defined inductively as
follows: given a proof system AX (either K, T, S4, or S5), a formula ϕ is provable from AX
if either:

• ϕ is an axiom,

• ϕ follows from provable formulas ψ and χ by modus ponens,

• ϕ follows from provable formula ψ by necessitation.

For example, to show that the axiom system K is sound with respect to the class of all
frames, the proof in Lean proceeds by induction on the provability relation. For the full
proof, see appendix B.

theorem soundness (AX : ctx) (F : set (frame)) (ϕ : form) :

prfK AX ϕ → global_sem_csq AX F ϕ := ...

Notice that the proof above was carried out with respect to an arbitrary axiom system AX

and class of frames F. As such, it technically not only specifies soundness for system K with
respect to the class of all frames, it specifies soundness for a whole family of proof systems
parameterized by AX and F. Thus, soundness for proof systems T, S4, and S5 follows (with
the help of a few additional lemmas and definitions) by providing different proofs systems
as the argument to AX, and different classes of frames as the argument to F. The statements
of these theorems are written as follows.

theorem T_soundness (ϕ : form) :

prfK T_axioms ϕ → global_sem_csq T_axioms ref_class ϕ := ...

theorem S4_soundness (ϕ : form) :

prfK S4_axioms ϕ → global_sem_csq S4_axioms ref_trans_class ϕ := ...

theorem S5_soundness (ϕ : form) :

prfK S5_axioms ϕ → global_sem_csq S5_axioms equiv_class ϕ := ...

The reader is encouraged to see appendix B or the full formalization on Github for the
detailed proofs.

With soundness results formalized in Lean, we now turn our attention to the proof of
completeness. This proof uses contraposition, and is therefore non-constructive. We shall
make use of a canonical model construction, and since canonical models rely on maximally
consistent sets, we begin our account with some definitions.

Consider a finite context Γ = {ϕ1, ϕ2, ..., ϕn}. We say that Γ is AX-consistent if 6`AX
¬(ϕ1 ∧ ϕ2 ∧ ... ∧ ϕn). This is represented in Lean with the following two definitions.

27

def fin_conj : list form → form

| [] := >
| (ϕ::ϕs) := ϕ & (fin_conj ϕs)

def fin_ax_consist (AX : ctx) (L : list form) :=

¬ prfK AX (fin_conj L ⊃ ⊥)

The first definition, fin conj, represents a finite conjunction of formulas using lists in
Lean. It is defined recursively: a formula ϕ cons-ed with a list of formulas ϕs evaluates to
the conjunction of ϕ and (fin conj ϕs). The base case is, of course, necessary, but also
purposely vacuous; for any formula ϕ, the truth value of (ϕ&>) semantically evaluates to
whatever the truth value of ϕ is. The definition fin ax consist then says that it is not the
case that the finite conjunction of formulas L proves ⊥.

An arbitrary context Γ is called AX-consistent if every finite subset of Γ is AX-consistent.
For this, we can write the following definition in Lean.

def ax_consist (AX Γ : ctx) :=

∀ L : list form, (∀ ψ ∈ L, ψ ∈ Γ) → fin_ax_consist AX L

Finally, we can define a context Γ to be maximally AX-consistent if it is AX-consistent and
every proper superset of Γ is not AX-consistent.

def max_ax_consist (AX Γ : ctx) :=

ax_consist AX Γ ∧ (∀ Γ′, Γ ⊂ Γ′ → ¬ ax_consist AX Γ’)

Since each world in the canonical model construction corresponds to a maximally consis-
tent set of formulas, an important step in the proof of completeness is to prove Lindenbaum’s
Lemma, which states that any consistent set of formulas can be extended to a maximally
consistent set. For this, we have the following statement of the theorem in Lean.4 Due to
its length, the reader is encouraged to consult the full proof in appendix B.

lemma lindenbaum (AX Γ : ctx) (hax : ax_consist AX Γ) :

∃ Γ’, max_ax_consist AX Γ’ ∧ Γ ⊆ Γ’ := ...

Lindenbaum’s lemma gives us the following important corollary, which states that a maxi-
mally AX-consistent set indeed exists.

lemma max_ax_exists (AX : ctx) (hax : sem_cons AX) :

∃ Γ : ctx, max_ax_consist AX Γ := ...

With these definitions in hand, we can build the canonical model. As with simpler
semantic definitions in Lean outlined above, we shall again define a canonical frame and a
canonical valuation separately.

4This construction departed from the standard construction often seen in introductory logic textbooks
using languages of countable cardinalities. Instead, I chose here to use Zorn’s lemma to generalize this
construction to languages of arbitrary cardinalities.

28

def canonical (AX : ctx) [hax : sem_cons AX] : frame :=

{

states := {xΓ : ctx // max_ax_consist AX xΓ},
h :=

begin

have h1 := max_ax_exists AX hax,

choose Γ h1 using h1,

exact 〈〈Γ, h1〉〉
end,

rel := λ xΓ y∆, ∀ ϕ : form, �ϕ ∈ xΓ.val → ϕ ∈ y∆.val

}

In other words, states in the canonical model are contexts that are maximally AX-
consistent. The hypothesis that the set of worlds is non-empty is satisfied by the corollary of
Lindenbaum’s lemma above, which states that a maximally AX-consistent set exists. The ac-
cessibility relation states that whenever the world xΓ has in its context the formula �ϕ, then
the only accessible worlds from xΓ are worlds y∆ that have in their contexts the formula ϕ.
Finally, the implicit argument [hax : sem cons AX] marked with square brackets informs
the Lean elaborator that the hypothesis inside should be inferred by the type class mecha-
nism. The hypothesis, sem cons AX, states that ⊥ is not a global semantic consequence of
the axiom system AX.

The canonical valuation is defined in Lean as follows: p n is true at exactly those worlds
having maximally AX-consistent contexts that contain p n.

def val_canonical (AX : ctx) [hax : sem_cons AX] :

nat → (canonical AX).states → Prop :=

λ n, λ xΓ : (canonical AX).states, (p n) ∈ xΓ.val

These definitions are used in order to prove the Truth lemma, which states that for all
formulas ϕ, we have that ϕ is contained in the context of each world in the canonical model
if and only if ϕ is valid at that world in the canonical model. For the full proof, see appendix
B.

lemma truth (AX : ctx) (hax : sem_cons AX) (xΓ : (canonical AX).states) :

∀ ϕ, forces (canonical AX) (val_canonical AX) xΓ ϕ↔ (ϕ ∈ xΓ.val) := ...

The completeness theorem follows as a corollary to the Truth lemma. For the full proof, see
appendix B.

theorem completeness (AX : ctx) (hax : sem_cons AX) (ϕ : form) :

global_sem_csq AX all_class ϕ→ prfK AX ϕ := ...

To extend completeness results for T, S4, and S5, we must show that the canonical model
for T is reflexive, the canonical model for S4 is reflexive and transitive, and the canonical
model for S5 is an equivalence relation. These canonical models are defined in Lean as
follows.

29

def T_canonical : frame := @canonical T_axioms sem_consT

def S4_canonical : frame := @canonical S4_axioms sem_consS4

def S5_canonical : frame := @canonical S5_axioms sem_consS5

The statement of the proofs regarding their accessibility relations are written below. For
the full proofs, as well as the proofs of completeness for these systems, see appendix B.

lemma T_reflexive : T_canonical ∈ ref_class := ...

lemma S4_reftrans : S4_canonical ∈ ref_trans_class :=

lemma S5_equiv : S5_canonical ∈ equiv_class := ...

This concludes the description of the formalization of basic modal logic in Lean. In the
next section, I will address the formalization of dynamic epistemic logic in Lean.

3.3 Dynamic Epistemic Logic

3.3.1 Syntax and Semantics

We now begin our account of the formalization of public announcement logic without common
knowledge in Lean. To reiterate from section 2.2.1, the language of public announcement
logic builds on the language of epistemic logic, so in order to describe the formalized theory of
public announcement logic, I shall also state many of the formalized definitions for epistemic
logic in parallel. I will begin by defining the two languages, form for epistemic logic and
formPA for public announcement logic.

inductive form (agents : Type) : Type

| bot : form

| var (n : nat) : form

| and (ϕ ψ : form) : form

| impl (ϕ ψ : form) : form

| box (a : agents)

(ϕ : form) : form

inductive formPA (agents : Type) : Type

| bot : formPA

| var (n : nat) : formPA

| and (ϕ ψ : formPA) : formPA

| impl (ϕ ψ : formPA) : formPA

| box (a : agents)

(ϕ : formPA) : formPA

| update (ϕ ψ : formPA) : formPA

30

For both languages, I have chosen to use the atomic formula falsum (⊥) and a countable
set of propositional variables indexed by the natural numbers (pn). In addition, I have chosen
to work with a non-minimal set of connectives that includes conjunction (&) implication
(⊃),and necessitation (K). Note that both languages are parameterized by agents : Type.

In the theory that follows, it will often be necessary to typecast between the two lan-
guages. Indeed, the translation function t : LK[] → L from the language of public announce-
ment logic to the language of epistemic logic is a way of typecasting and is an important
part of the completeness proof. However, for typechecking reasons in Lean it is also neces-
sary to define an embedding from the language of epistemic logic to the language of public
announcement logic. Thus, in addition to the formal definitions of the languages, we have
the following function definition that transforms formulas of type form to formulas of type
formPA.

def to_PA : form agents → formPA agents

| (form.bot) := formPA.bot

| (form.var n) := formPA.var n

| (form.and ϕ ψ) := formPA.and (to_PA ϕ) (to_PA ψ)
| (form.impl ϕ ψ) := formPA.impl (to_PA ϕ) (to_PA ψ)
| (form.box a ϕ) := formPA.box a (to_PA ϕ)

Turning to the basic semantics, in epistemic and public announcement logics Kripke
frames are again formalized as structures. In this case, a frame is indexed by the type
agents and consists of states of some type, a hypothesis that the states are non-empty, and
a binary relation for each agent between states.

structure frame (agents : Type) :=

(states : Type)

(h : nonempty states)

(rel : agents → states → states → Prop)

Next we can define validity. Validity for epistemic logic is specified straightforwardly by
cases in Lean as follows.

def forces : ∀ f : frame agents,

(nat → f.states → Prop) → f.states → form agents → Prop

| f v x form.bot := false

| f v x (form.var n) := v n x

| f v x (form.and ϕ ψ) := (forces f v x ϕ) ∧ (forces f v x ψ)
| f v x (form.impl ϕ ψ) := (forces f v x ϕ) → (forces f v x ψ)
| f v x (form.box a ϕ) := ∀ y, f.rel a x y → forces f v y ϕ

Before we can define validity for public announcement logic, we must specify a frame re-
striction in Lean. Recall, the public announcement [ϕ] is a state transformer; it restricts
the set of states to only those states where ϕ holds. Thus, a frame restriction is a function
that takes a frame f, a predicate P that the states of the frame must satisfy, a state s, and
a hypothesis Ps that the state s indeed satisfies P.

31

def frame.restrict (f : frame agents) (P : f.states → Prop)

(s : f.states) (Ps : P s) : frame agents :=

{

states := { s’ : f.states // P s’ },

h := 〈〈s, Ps〉〉,
rel := λ a : agents, λ u v, f.rel a u.val v.val

}

The resulting structure consists of the subtype of all states s’ in the original frame that
satisfy P, a proof that the subtype of states is non-empty, and a binary relation for each
agent between states of the subtype.

With frame restrictions now defined, we can use them in our definition of validity for
public announcement logic. The definition in Lean is again by cases.

def forcesPA : ∀ f : frame agents,

(nat → f.states → Prop) → f.states → formPA agents → Prop

| f v x bot := false

| f v x (var n) := v n x

| f v x (and ϕ ψ) := (forcesPA f v x ϕ) ∧ (forcesPA f v x ψ)
| f v x (impl ϕ ψ) := (forcesPA f v x ϕ) → (forcesPA f v x ψ)
| f v x (box a ϕ) := ∀ y, f.rel a x y → forcesPA f v y ϕ
| f v x (update ϕ ψ) := ∀ h : forcesPA f v x ϕ,

forcesPA (f.restrict (λ y, forcesPA f v y ϕ) x h)

(λ n u, v n u.val) 〈x, h〉 ψ

The final clause for update essentially says that whenever ϕ holds at x, then ψ holds at x in
the restricted frame f.restrict, where the restricted frame contains only the set of worlds
where ϕ holds.

This concludes the basic syntactic and semantic definitions for public announcement logic
that are note-worthy. In the next section, I will discuss the formalization of soundness and
completeness results.

3.3.2 Soundness and Completeness

The axiom system PA for public announcement logic rests on the axiom system S5 for
epistemic logic indexed over agents, which is given by the following definition in Lean.

inductive prfS5 : ctx agents → form agents → Prop

| ax {Γ} {ϕ} (h : ϕ ∈ Γ) : prfS5 Γ ϕ
| pl1 {Γ} {ϕ ψ} : prfS5 Γ ϕ ⊃ (ψ ⊃ ϕ)
| pl2 {Γ} {ϕ ψ χ} : prfS5 Γ (ϕ ⊃ (ψ ⊃ χ)) ⊃ ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ χ))
| pl3 {Γ} {ϕ ψ} : prfS5 Γ (¬ϕ ⊃ ¬ψ) ⊃ (¬ϕ ⊃ ψ) ⊃ ϕ
| pl4 {Γ} {ϕ ψ} : prfS5 Γ ϕ ⊃ (ψ ⊃ (ϕ & ψ))
| pl5 {Γ} {ϕ ψ} : prfS5 Γ (ϕ & ψ) ⊃ ϕ
| pl6 {Γ} {ϕ ψ} : prfS5 Γ (ϕ & ψ) ⊃ ψ
| pl7 {Γ} {ϕ ψ} : prfS5 Γ (¬ϕ ⊃ ¬ψ) ⊃ (ψ ⊃ ϕ)
| kdist {Γ} {ϕ ψ} {a} : prfS5 Γ (K a (ϕ ⊃ ψ)) ⊃ ((K a ϕ) ⊃ (K a ψ))

32

| truth {Γ} {ϕ} {a} : prfS5 Γ (K a ϕ) ⊃ ϕ
| posintro {Γ} {ϕ} {a} : prfS5 Γ (K a ϕ) ⊃ (K a (K a ϕ))
| negintro {Γ} {ϕ} {a} : prfS5 Γ (¬(K a ϕ)) ⊃ (K a ¬(K a ϕ))
| mp {Γ} {ϕ ψ}

(hpq: prfS5 Γ (ϕ ⊃ ψ))
(hp : prfS5 Γ ϕ) : prfS5 Γ ψ

| nec {Γ} {ϕ} {a}

(hp: prfS5 Γ ϕ) : prfS5 Γ (K a ϕ)

The proof system PA is much the same as the proof system S5, with some additional
rules for the update operator that govern how update interacts with other connectives.

inductive prfPA : ctxPA agents → formPA agents → Prop

| ax {Γ} {ϕ} (h : ϕ ∈ Γ) : prfPA Γ ϕ
| pl1 {Γ} {ϕ ψ} : prfPA Γ ϕ ⊃ (ψ ⊃ ϕ)
| pl2 {Γ} {ϕ ψ χ} : prfPA Γ (ϕ ⊃ (ψ ⊃ χ)) ⊃((ϕ ⊃ ψ) ⊃ (ϕ ⊃ χ))
| pl3 {Γ} {ϕ ψ} : prfPA Γ (¬ϕ ⊃ ¬ψ) ⊃ ((¬ϕ ⊃ ψ) ⊃ ϕ)
| pl4 {Γ} {ϕ ψ} : prfPA Γ ϕ ⊃ (ψ ⊃ (ϕ & ψ))
| pl5 {Γ} {ϕ ψ} : prfPA Γ (ϕ & ψ) ⊃ ϕ
| pl6 {Γ} {ϕ ψ} : prfPA Γ (ϕ & ψ) ⊃ ψ
| pl7 {Γ} {ϕ ψ} : prfPA Γ (¬ϕ ⊃ ¬ψ) ⊃ (ψ ⊃ ϕ)
| kdist {Γ} {ϕ ψ} {a} : prfPA Γ (K a (ϕ ⊃ ψ)) ⊃ ((K a ϕ) ⊃ (K a ψ))
| truth {Γ} {ϕ} {a} : prfPA Γ (K a ϕ) ⊃ ϕ
| posintro {Γ} {ϕ} {a} : prfPA Γ (K a ϕ) ⊃ (K a (K a ϕ))
| negintro {Γ} {ϕ} {a} : prfPA Γ (¬(K a ϕ)) ⊃ (K a ¬(K a ϕ))
| atomicbot {Γ} {ϕ} : prfPA Γ (U ϕ ⊥) ↔ (ϕ ⊃ ⊥)
| atomicperm {Γ} {ϕ} {n} : prfPA Γ (U ϕ (p n)) ↔ (ϕ ⊃ (p n))

| announceneg {Γ} {ϕ ψ} : prfPA Γ (U ϕ (¬ψ)) ↔ (ϕ ⊃ ¬(U ϕ ψ))
| announceconj {Γ}

{ϕ ψ χ} : prfPA Γ (U ϕ (ψ & χ)) ↔ ((U ϕ ψ) & (U ϕ χ))
| announceimp {Γ}

{ϕ ψ χ} : prfPA Γ (U ϕ (ψ ⊃ χ)) ↔ ((U ϕ ψ) ⊃ (U ϕ χ))
| announceknow {Γ}

{ϕ ψ} {a} : prfPA Γ (U ϕ (K a ψ)) ↔ (ϕ ⊃ (K a (U ϕ ψ)))
| announcecomp {Γ}

{ϕ ψ χ} : prfPA Γ (U ϕ (U ψ χ)) ↔ (U (ϕ & (U ϕ ψ)) χ)
| mp {Γ} {ϕ ψ}

(hpq: prfPA Γ (ϕ ⊃ ψ))
(hp : prfPA Γ ϕ) : prfPA Γ ψ

| nec {Γ} {ϕ} {a}

(hp: prfPA Γ ϕ) : prfPA Γ (K a ϕ)

With the basic semantics defined and the proof systems S5 and PA defined, we can prove
soundness for both proof systems with respect to the class of frames Feq satisfying an equiv-
alence relation. However, in order to prove soundness for PA, a few lemmas regarding

33

semantic equivalence are required. These lemmas correspond to those given in proposition
4.22 in chapter 4 of Dynamic Epistemic Logic [16].

lemma public_announce_var (ϕ : formPA agents) (f : frame agents)

(v : nat → f.states → Prop) (x : f.states) (n : nat) :

forcesPA f v x (U ϕ p n) ↔ forcesPA f v x (ϕ ⊃ (p n)) := ...

lemma public_announce_conj (ϕ ψ χ : formPA agents) (f : frame agents)

(v : nat → f.states → Prop) (x : f.states) :

forcesPA f v x (U ϕ (ψ & χ)) ↔ forcesPA f v x ((U ϕ ψ) & (U ϕ χ)) := ...

lemma public_announce_imp (ϕ ψ χ : formPA agents) (f : frame agents)

(v : nat → f.states → Prop) (x : f.states) :

forcesPA f v x (U ϕ (ψ ⊃ χ)) ↔ forcesPA f v x ((U ϕ ψ) ⊃ (U ϕ χ)) := ...

lemma public_announce_neg (ϕ ψ : formPA agents) (f : frame agents)

(v : nat → f.states → Prop) (x : f.states) :

forcesPA f v x (U ϕ (¬ψ)) ↔ forcesPA f v x (ϕ ⊃ ¬(U ϕ ψ)) := ...

lemma public_announce_know (ϕ ψ : formPA agents) (f : frame agents)

(v : nat → f.states → Prop) (x : f.states) (a : agents) :

forcesPA f v x (U ϕ (K a ψ)) ↔ forcesPA f v x (ϕ ⊃ (K a (U ϕ ψ))) := ...

lemma public_announce_comp (ϕ ψ χ : formPA agents) (f : frame agents)

(v : nat → f.states → Prop) (x : f.states) :

forcesPA f v x (U (ϕ & U ϕ ψ) χ) ↔ forcesPA f v x (U ϕ (U ψ χ)) :=

For the proofs of these lemmas, see the file announcements.lean. For the proofs of sound-
ness, see theorems soundnessS5 and soundnessPA in appendix C.

Turning our attention to completeness, recall from section 2.2 that completeness for
system PA with respect to the class of frames Feq is carried out by translation. That is,
we define a translation function t : LK[] → LK and show that every formula is provably
equivalent to its translation. Completeness for PA with respect to Feq then follows from
completeness for S5 with respect to Feq.

To do this in Lean, we must start by defining a complexity measure in order to prove
the equivalence of formulas by induction on the complexity of formulas. This complexity
measure in Lean is specified by cases below.

@[simp] def complexity : formPA agents → nat

| (⊥) := 1

| (p n) := 1

| (ϕ & ψ) := 1 + max (complexity ϕ) (complexity ψ)
| (ϕ ⊃ ψ) := 1 + max (complexity ϕ) (complexity ψ)
| (K a ϕ) := 1 + (complexity ϕ)
| (U ϕ ψ) := (4 + (complexity ϕ)) * (complexity ψ)

34

With the complexity measure defined, we can give the definition of the translation func-
tion t : LK[] → LK . The definition below might be slightly confusing for those unfamiliar
with Lean, so a bit of clarification for the reader will be helpful in this case.

This translation function is specified recursively by cases using the equation compiler in
Lean. The equation compiler works by attempting to find a well-founded relation on the
type being recursed on and automatically attempts to prove the function is well-founded.

However, sometimes one needs to specify a different well-founded relation in order to
prove that a recursion is well-founded. To do this, one defines a has well founded instance.
This is a structure with two fields, a relation and a proof that the relation is well-founded.

In this case, we define a has well founded instance using the complexity measure spec-
ified above. The final line in the definition tells the equation compiler to use this relation.
For each recursive clause of the definition, we must show that the relation holds by giving
Lean a proof that it indeed holds.

@[simp] def translate : formPA agents → form agents

| (formPA.bot) := form.bot

| (p n) := form.var n

| (ϕ & ψ) := have _, from tr1 ϕ ψ,
have _, from tr2 ϕ ψ, form.and (translate ϕ) (translate ψ)

| (ϕ ⊃ ψ) := have _, from tr1 ϕ ψ,
have _, from tr2 ϕ ψ, form.impl (translate ϕ) (translate ψ)

| (K a ϕ) := form.box a (translate ϕ)
| (U ϕ ⊥) := have _, from tr3 ϕ, translate (ϕ ⊃ ⊥)
| (U ϕ (p n)) := have _, from tr3 ϕ, translate (ϕ ⊃ (p n))

| (U ϕ (ψ & χ)) := have _, from tr5 ϕ ψ χ, translate ((U ϕ ψ) & (U ϕ χ))
| (U ϕ (ψ ⊃ χ)) := have _, from tr5 ϕ ψ χ, translate ((U ϕ ψ) ⊃ (U ϕ χ))
| (U ϕ (K a ψ)) := have _, from tr6 ϕ ψ, translate (ϕ ⊃ (K a (U ϕ ψ)))
| (U ϕ (U ψ χ)) := have _, from tr7 ϕ ψ χ, translate (U (ϕ & (U ϕ ψ)) χ)
using_well_founded {rel_tac := λ _ _, ‘[exact 〈_, measure_wf complexity〉]}

With the definitions of complexity and the translation function in hand, we can show
that every formula is provably equivalent to its translation. For the proof, see theorem
equiv translation in appendix C. Completeness of PA with respect to Feq then follows
from completeness of S5 with respect to Feq. For the full proof, again see appendix C.

theorem completenessPA {ϕ : formPA agents} (Γ : ctxPA agents) :

global_sem_csqPA ∅ equiv_class ϕ→ prfPA ∅ ϕ := ...

This concludes the description of the formalization of modal logic and public announce-
ment logic in Lean. In the next chapter, I will consider related work.

35

Chapter 4

Related Work

The project is not the first formalization of modal logic in Lean, and I would be remiss to
not mention how this project benefitted from the prior work of Wu and Goré [20], as well
as Bentzen [5]. In particular, Wu and Goré formalized decision procedures for the modal
logics K, T and S4 in Lean, and Bentzen formalized the first canonical model construction
of completeness for S5 modal logic in Lean, both in 2019.

Although this formalization project also included a canonical model construction of com-
pleteness for K, T, S4, and S5 like Bentzen, a great deal of the design decisions differed from
that of Bentzen, making both formalizations novel advancements to modal logic in Lean.
Additionally, this thesis represent the first steps toward formalizing modal model theoretic
arguments and constructions in Lean, and the first formalization of soundness and com-
pleteness for dynamic epistemic logic in any proof assistant to date. In the discussion that
follows, I will address related formalization work in modal model theory as well as dynamic
epistemic logic.

In terms of related formaliztion work in model theory, Fervari et al. [9] proved invariance
under bisimulation in the Coq theorem prover in 2019 by formalizing a generalized model
update function as well as a notion of bisimulation that is independent with the respect to
the model update function. The advantage of this approach is that their notion of bisimula-
tion is applicable to any relation changing logic, such as dynamic logics, hybrid logics, and
separation logics.

Additionally, in 2020 Xu and Norrish [21] used Coq to formalize a number of results from
the first two chapters of a Blackburn et al. [6]. Their formalization includes the Van Benthem
characterization theorem, two versions of Loś’s theorem on the saturation of ultraproduct
models, and modal equivalence as bisimilarity between ultrafilter extensions.

In terms of related formalization work in dynamic epistemic logic, most formalizations so
far have centered around applications in model-checking and proof theory. First, in 2006 Van
Eijck [17] developed a Haskell model-checker called DEMO (Dynamic Epistemic MOdeling)
that enables a graphical display of update results and action models. In 2010 Maliković and
Čubrilo [12] axiomatized the proof theory of epistemic actions in Coq, specifically in relation
to solving knowledge games [12]. Finally, in 2018 Balco, et al. [3] formalized a tool called
D.EAK (Display calculus for Epistemic Actions and Knowledge) in Isabelle/HOL, which
assists the user in reasoning about propositional sequent calculi.

36

Chapter 5

Conclusions and Future Work

The principal goal of this thesis has been to formalize a variety of results from modal logic
within the Lean theorem prover. In particular, I have presented the formalization of both
model-theoretic results in definability and undefinability, as well as proof-theoretic results
in the soundness and completeness of various systems with respect to their corresponding
frame classes, including the basic modal logics K, T, S4, and S5, the epistemic logic S5, and
the dynamic epistemic logic of public announcements, PA.

To conclude, I would like to discuss directions for future work. Two areas of interest stand
out. The first is the formalization of public announcement logic with common knowledge.
The second is the formalization of topological semantics with respect to logics of knowledge
and belief. I begin with the former.

5.1 Future Work

5.1.1 PAL with Common Knowledge

The language of public announcement logic with common knowledge is given by the following
definition.

Definition 5.1.1 (The language of PAL with Common Knowledge) Given a finite set
of agents A and a countable set of primitive propositions prop, the language LKC[] is defined
inductively as follows:

ψ := ⊥ | pn | ψ ⊃ ϕ | Kaϕ | CBϕ | [ϕ]ψ

where a ∈ A, pn ∈ prop, and B ⊆ A.

Here, common knowledge of ϕ means that everybody in some group B knows that ϕ,
and everybody knows that everybody knows that ϕ, ad infinitum. Semantically, this is
represented by the mathematical notion that,

CBϕ =
∞∧
n=0

En
Bϕ,

37

where
EBϕ =

∧
b∈B

Kbϕ,

and E0
Bϕ = ϕ and En+1

B ϕ = EBE
n
Bϕ.1

The completeness proof for public announcement logic demonstrated in this thesis utilized
a canonical model construction. However, when common knowledge is added to the language,
one can show that the logic is non-compact. Thus, a simple canonical model construction
cannot be used, and instead a model must be constructed for only a finite fragment of the
language. Formalizing the completeness result for public announcement logic with common
knowledge would be the next obvious step for further work.

5.1.2 Topological Semantics

The next area of interest for future work involves topological semantics. Topology is gener-
ally regarded as the study of properties preserved under continuous deformations, such as
stretching, bending, or shrinking, but not tearing or shredding.

Why would one want to study modal logic through the lens of topology? Topological
spaces are interesting with respect to modal logic because they provide a framework for rep-
resenting evidence and its relationship to knowledge and belief. Much of this thesis centered
around the epistemic interpretation of modalities, so generalizing results from relational se-
mantics to topological semantics would enable the formalization of many of the new and
exciting advancements in formal epistemology.

What exactly is topological semantics, though? The definition of topological models –
and a corresponding notion of topological validity – are defined as follows.

Definition 5.1.2 (Topological Model) A topological model is a topological space (X, T)
together with a valuation v : prop→ 2X .

Definition 5.1.3 (Topological Validity) Truth in a model M = (X, T , v) is defined as

JpKM = v(p)

J¬ϕKM = X \ JϕKM
Jϕ ∧ ψKM = JϕKM ∩ JψKM

J�ϕKM = int(JϕKM)

where int(JϕKM) denotes the topological interior of the set JϕK.

A primary area of interest for me is to formalize is the completeness of S4 modal logic
with respect to the class of all topological spaces.

Theorem 5.1.4 (Completeness) The system S4 is sound and complete with respect to
the class of all topological spaces.

The connection between topological spaces and S4 modal logic dates back to Alfred Tarski
in the 1940s [14], but it still has not been formalized in any theorem prover. Lean would be
naturally suited to this formalization project due to mathlib’s extensive topology library.

1For instance, E2
Bϕ means that everybody knows that everybody knows that ϕ.

38

Chapter 6

Acknowledgements

I cannot begin to express my thanks to Jeremy Avigad, who has supervised this thesis in
its entirety. First and foremost, I am thankful for his unparalleled expertise and instruction
not only in Lean and interactive theorem proving, but in all things logic-related. Without
his continual guidance, this thesis would not have been possible. I would also like to thank
him for his enduring support as an advisor. There have been many times (especially during
the COVID-19 pandemic, but also during my initial adjustment to academic life at Carnegie
Mellon) that Jeremy has helped me stay motivated and keep going. Thank you, Jeremy, for
your patient help and your constant support.

I would also like to extend my sincere gratitude to Adam Bjorndahl and Wilfried Sieg. I
am most thankful for Adam’s mastery in the subjects of modal logic and formal epistemology,
without which I would not have gained the knowledge required to complete this thesis.
Likewise, I am thankful for Wilfried’s expertise in mathematical logic and the philosophy of
mathematics, which has provided me with a depth of understanding toward both the history
and practices of logic that has enabled me to understand the field more broadly. Finally, I
would like to thank them for agreeing to sit on my thesis committee, and for their support
as mentors at Carnegie Mellon.

Many thanks to friends, TAs, colleagues, and alumni in the Carnegie Mellon community
who discussed various aspects of interactive theorem proving, modal logic, and formal episte-
mology with me; Dave Vitale, Fernando Larrain, Jacob Neumann, Mario Carniero, and Seul
Baek come to mind. I am also grateful to Conny Kneiling, Matt Thorpe, and Will Gunther
for their moral support and encouragement.

Finally, my accomplishments would not have been possible without the love and support
of my parents. Special thanks to Tom and Sue.

39

Chapter 7

Bibliography

[1] Hajnal Andréka, Johan Van Benthem, and Istvan Németi. Back and forth between
modal logic and classical logic. 1995.

[2] Jeremy Avigad, Leonardo de Moura, and Soonho Kong. Theorem Proving in Lean,
volume 3.4.0.

[3] Samuel Balco, Sabine Frittella, Giuseppe Greco, Alexander Kurz, and Alessandra Palmi-
giano. Software tool support for modular reasoning in modal logics of actions. In
International Conference on Interactive Theorem Proving, pages 48–67. Springer, 2018.

[4] Alexandru Baltag and Bryan Renne. Dynamic Epistemic Logic. In Edward N. Zalta,
editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford
University, winter 2016 edition, 2016.

[5] Bruno Bentzen. A Henkin-style completeness proof for the modal logic S5. arXiv
preprint arXiv:1910.01697, 2019.

[6] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, volume 53. Cam-
bridge University Press, 2002.

[7] Leah Crane. Google has created a maths AI that has already proved 1200 theorems.
New Scientist, April 2019.

[8] Ernest Davis and Leora Morgenstern. Epistemic logic and its applications: Tutorial
notes. In International Joint Conferences on Artificial Intelligence, volume 93. Citeseer,
1983.

[9] Raul Fervari, Francisco Trucco, and Beta Ziliani. Mechanizing bisimulation theorems
for relation-changing logics in coq. In International Workshop on Dynamic Logic, pages
3–18. Springer, 2019.

[10] Kevin Hartnett. Building the mathematical library of the future. Quanta Magazine,
Oct 2020.

[11] Clarence Irving Lewis. The place of intuition in knowledge. PhD thesis, Harvard Uni-
versity, 1910.

40

[12] Marko Maliković and Mirko Čubrilo. Reasoning about epistemic actions and knowledge
in multi-agent systems using coq. Comput. Technol. Appl., 2(8):616–627, 2011.

[13] The mathlib Community. The lean mathematical library. In Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, page
367–381, New York, NY, USA, 2020. Association for Computing Machinery.

[14] John Charles Chenoweth McKinsey and Alfred Tarski. The algebra of topology. Annals
of mathematics, pages 141–191, 1944.

[15] Robert Stalnaker. On logics of knowledge and belief. Philosophical studies, 128(1):169–
199, 2006.

[16] Hans Van Ditmarsch, Wiebe van Der Hoek, and Barteld Kooi. Dynamic epistemic logic,
volume 337. Springer Science & Business Media, 2007.

[17] Jan van Eijck. a demo of epistemic modelling. In Interactive Logic. Selected Papers
from the 7th Augustus de Morgan Workshop, London, volume 1, pages 303–362, 2007.

[18] Moshe Y Vardi. Why is modal logic so robustly decidable? Technical report, 1997.

[19] Mathias Winckel and Ralph Matthes. Formalization of a dynamic logic for graph trans-
formation in the Coq proof assistant.

[20] Minchao Wu and Rajeev Goré. Verified decision procedures for modal logics. In 10th
International Conference on Interactive Theorem Proving (ITP 2019). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2019.

[21] Yiming Xu and Michael Norrish. Mechanised modal model theory. In International
Joint Conference on Automated Reasoning, pages 518–533. Springer, 2020.

41

Appendices

42

Appendix A

Invariance Proofs

A.0.1 Invariance Under Disjoint Union

variables {α β : Type}

def frame.rel.dunion (r1 : α→ α→ Prop) (r2 : β → β → Prop) :

(sum α β) → (sum α β) → Prop

| (sum.inl a1) (sum.inl a2) := r1 a1 a2

| (sum.inr b1) (sum.inr b2) := r2 b1 b2

| _ _ := false

def val_dunion {f1 f2 : frame} (v1 : nat → f1.states → Prop)

(v2 : nat → f2.states → Prop) : nat → (sum f1.states f2.states) → Prop

| n (sum.inl x1) := v1 n x1

| n (sum.inr x2) := v2 n x2

def frame.dunion (f1 f2 : frame) : frame :=

{

states := sum f1.states f2.states,

h := 〈sum.inl f1.h.default〉,
rel := frame.rel.dunion (f1.rel) (f2.rel)

}

43

theorem invariance_dunion (f1 f2 : frame) (v1 : nat → f1.states → Prop)

(v2 : nat → f2.states → Prop) (x1 : f1.states) :

theory_at f1 v1 x1 = theory_at (f1.dunion f2) (val_dunion v1 v2) (sum.inl x1) :=

begin

ext ϕ, revert x1, induction ϕ,
repeat {intro x1},

repeat {split},

repeat {intro h, exact h},

{intro h, split, exact (ih_ϕ x1).mp h.left,

exact (ih_ψ x1).mp h.right},

{intro h, split, exact (ih_ϕ x1).mpr h.left,

exact (ih_ψ x1).mpr h.right},

{intros h h1, exact (ih_ψ x1).mp (h ((ih_ϕ x1).mpr h1))},

{intros h h1, exact (ih_ψ x1).mpr (h ((ih_ϕ x1).mp h1))},

{intros h s h1, cases s, exact (ih_ϕ s).mp ((h s) h1),

exact false.elim h1},

{intros h s h1, exact (ih_ϕ s).mpr ((h (sum.inl s)) h1)}

end

44

A.0.2 Invariance Under Generated Submodels

The reader is encouraged to refer to the file paths.lean for definitions and proofs related
to reachability.

def frame.gen_subframe (f : frame) (x : f.states) : frame :=

{

states := { y // reachable (f.rel) x y},

h := 〈x, ref_close x (f.rel)〉,
rel := λ x1 x2, (f.rel) x1.val x2.val

}

def val_gen_subframe (f : frame) (x : f.states)

(v : nat → f.states → Prop) : nat → (frame.gen_subframe f x).states → Prop :=

λ n, λ y, v n y.val

theorem invariance_gen_submodel (f : frame) (v : nat → f.states → Prop)

(x : f.states) (y : (frame.gen_subframe f x).states) :

theory_at f v y.val = theory_at (f.gen_subframe x) (val_gen_subframe f x v) y :=

begin

ext ϕ, revert y, induction ϕ,
repeat {intro y},

repeat {split},

repeat {intro h1, exact h1},

{intro h1, split, exact (ih_ϕ y).mp h1.left,

exact (ih_ψ y).mp h1.right},

{intro h1, split, exact (ih_ϕ y).mpr h1.left,

exact (ih_ψ y).mpr h1.right},

{intros h1 h2, exact (ih_ψ y).mp (h1 ((ih_ϕ y).mpr h2))},

{intros h1 h2, exact (ih_ψ y).mpr (h1 ((ih_ϕ y).mp h2))},

{intros h1 z h2, exact (ih_ϕ z).mp ((h1 z.val) h2)},

{intros h1 z h2,

have h3 := reach_right x y.1 z f.rel (and.intro y.2 h2),

exact (ih_ϕ 〈z, h3〉).mpr ((h1 〈z, h3〉) h2)}

end

45

A.0.3 Invariance Under Surjective Bounded Morphisms

open function

def is_bddmorphism {f1 f2 : frame} (g : f1.states → f2.states) :=

∀ x1 : f1.states, forth (λ x1 x2, (g x1) = x2) x1 (g x1)

∧ back (λ x1 x2, (g x1) = x2) x1 (g x1)

def is_surjbddmorphism {f1 f2 : frame} (g : f1.states → f2.states) :=

surjective g ∧ is_bddmorphism g

theorem pull_back {f1 f2 : frame} (g : f1.states → f2.states)

(h : is_surjbddmorphism g) : ∀ϕ, ¬ f_valid ϕ f2 → ¬ f_valid ϕ f1 :=

begin

intros ϕ h1, rw f_valid at *, push_neg at h1, push_neg,

cases h1 with v2 h1, cases h1 with y h1,

let v1 := (λ n x, v2 n (g x)), use v1,

cases h with hl hr, cases hl y with x hl,

existsi (x : f1.states),

have h3 := invariance_bisim v1 v2 (λ x y, g x = y),

have h4 : is_bisimulation v1 v2 (λ (x : f1.states) (y : f2.states), g x = y),

{intros x1 x2 h2, split,

{intro n, split, intro h, subst h2, apply h, intro h, subst h2, apply h},

split,

have h5 : forth (λ (x1 : f1.states) (x2 : f2.states), g x1 = x2) x1 x2,

from eq.subst h2 (hr x1).left, exact h5,

have h5 : back (λ (x1 : f1.states) (x2 : f2.states), g x1 = x2) x1 x2,

from eq.subst h2 (hr x1).right, exact h5},

specialize h3 h4 x y hl, intro h2, apply h1,

rw set.subset.antisymm_iff at h3, cases h3,

rw set.subset_def at h3_left, exact h3_left ϕ h2

end

theorem invariance_pull_back (F : set (frame)) {f1 f2 : frame}

(h1 : f1 ∈ F) (h2 : f2 6∈ F) :

(∃ g : f1.states → f2.states, is_surjbddmorphism g) → undefinable F :=

begin

intro h, cases h with g h,

intro ϕ, by_contradiction h3,

have h4 := h3 f1, specialize h3 f2,

rw ←not_iff_not at h3,

exact (pull_back g h ϕ (h3.mp h2)) (h4.mp h1)

end

46

A.0.4 Invariance Under Bisimulation

def base {f1 f2 : frame} (v1 : nat → f1.states → Prop)

(v2 : nat → f2.states → Prop) (x1 : f1.states) (x2 : f2.states) :=

∀ n, v1 n x1 ↔ v2 n x2

def forth {f1 f2 : frame} (bisim : f1.states → f2.states → Prop)

(x1 : f1.states) (x2 : f2.states) :=

∀ y1, f1.rel x1 y1 → (∃ y2 : f2.states, f2.rel x2 y2 ∧ bisim y1 y2)

def back {f1 f2 : frame} (bisim : f1.states → f2.states → Prop)

(x1 : f1.states) (x2 : f2.states) :=

∀ y2, f2.rel x2 y2 → (∃ y1 : f1.states, f1.rel x1 y1 ∧ bisim y1 y2)

def is_bisimulation {f1 f2 : frame} (v1 : nat → f1.states → Prop)

(v2 : nat → f2.states → Prop)

(bisim : f1.states → f2.states → Prop) :=

∀ x1 x2, bisim x1 x2 → (base v1 v2 x1 x2 ∧ forth bisim x1 x2

∧ back bisim x1 x2)

theorem invariance_bisim {f1 f2 : frame} (v1 : nat → f1.states → Prop)

(v2 : nat → f2.states → Prop) (bisim : f1.states → f2.states → Prop)

(h : is_bisimulation v1 v2 bisim) (x1 : f1.states) (x2 : f2.states) :

bisim x1 x2 → theory_at f1 v1 x1 = theory_at f2 v2 x2 :=

begin

intro h1, ext ϕ, revert x1 x2, induction ϕ,
repeat {intros x1 x2 h1},

{split, repeat {intro h2, exact h2}},

{specialize h x1 x2 h1, split,

intro h2, exact (h.left ϕ).mp h2,

intro h2, exact (h.left ϕ).mpr h2},

{specialize ih_ϕ x1 x2 h1, specialize ih_ψ x1 x2 h1, split,

intro h2, split, exact ih_ϕ.mp h2.left, exact ih_ψ.mp h2.right,

intro h2, split, exact ih_ϕ.mpr h2.left, exact ih_ψ.mpr h2.right},

{specialize ih_ϕ x1 x2 h1, specialize ih_ψ x1 x2 h1, split,

intros h2 h3, exact ih_ψ.mp (h2 (ih_ϕ.mpr h3)),

intros h2 h3, exact ih_ψ.mpr (h2 (ih_ϕ.mp h3))},

{specialize h x1 x2 h1, cases h with h4 h5, cases h5 with h5 h6, split,

{intros h2 y2 h3, specialize h6 y2 h3, cases h6 with y1 h6,

cases h6 with h6 h7, exact (ih_ϕ y1 y2 h7).mp (h2 y1 h6)},

{intros h2 y1 h3, specialize h5 y1 h3, cases h5 with y2 h5,

cases h5 with h5 h7, exact (ih_ϕ y1 y2 h7).mpr (h2 y2 h5)}}

end

47

Appendix B

Modal Logic Proofs

B.0.1 Soundness for System K

theorem soundness (AX : ctx) (F : set (frame)) (ϕ : form) :

prfK AX ϕ → global_sem_csq AX F ϕ :=

begin

intro h,

induction h,

{intros f h v h1 x,

exact (h1 h_ϕ x) h_h},

{intros f h2 v h3 x h4 h5, exact h4},

{intros f h2 v h3 x h4 h5 h6, apply h4,

exact h6, apply h5, exact h6},

{intros f h2 v h3 x h4 h5,

by_contradiction h6,

exact (h4 h6) (h5 h6)},

{intros f h2 v h3 x h4 h5,

exact and.intro h4 h5},

{intros f h2 v h3 x h4, exact h4.left},

{intros f h2 v h3 x h4, exact h4.right},

{intros f h2 v h3 x h4 h5,

repeat {rw forces at h4},

repeat {rw imp_false at h4},

rw not_imp_not at h4,

exact h4 h5},

{intros f h2 v h3 x h4 h5 x’ h6,

exact h4 x’ h6 (h5 x’ h6)},

{intros f h2 v h3 x,

exact (h_ih_hpq f h2 v h3 x) (h_ih_hp f h2 v h3 x)},

{intros f h2 v h3 x y h4,

exact h_ih f h2 v h3 y},

end

48

B.0.2 Soundness for System T

lemma soundnesshelper {Γ : ctx} {ϕ : form} {C : set (frame)} :

prfK Γ ϕ → (∀ ψ ∈ Γ, F_valid ψ C) → global_sem_csq Γ C ϕ :=

begin

intros h1 h2 f h3 v h4, induction h1,

{intro x, exact h2 h1_ϕ h1_h f h3 v x},

{intros x h4 h5, exact h4},

{intros x h4 h5 h6, exact (h4 h6) (h5 h6)},

{intros x h3 h4, by_contradiction h5, specialize h3 h5,

rw ←not_forces_imp at h3, exact h3 (h4 h5)},

{intros x h4 h5, exact and.intro h4 h5},

{intros x h4, exact h4.left},

{intros x h4, exact h4.right},

{intros x h4 h5, repeat {rw forces at h4},

repeat {rw imp_false at h4},

rw not_imp_not at h4, exact h4 h5},

{intros x h3 h4, intros x’ h5,

exact (h3 x’ h5) (h4 x’ h5)},

{intro x, exact h1_ih_hpq h2 h4 x (h1_ih_hp h2 h4 x)},

{intros x y h3, apply h1_ih, exact h2, exact h4}

end

lemma inclusion_valid {C C’ : set (frame)} :

∀ ψ, C ⊆ C’ → F_valid ψ C’ → F_valid ψ C :=

begin

intros ϕ h1 h2 f h3 v x,

exact h2 f (set.mem_of_subset_of_mem h1 h3) v x

end

lemma T_helper : ∀ ϕ ∈ T_axioms, F_valid ϕ ref_class :=

begin

intros ϕ h1 f h2 v x,

cases h1 with ψ h1, subst h1,

apply ref_helper, exact h2

end

theorem T_soundness (ϕ : form) :

prfK T_axioms ϕ → global_sem_csq T_axioms ref_class ϕ :=

begin

intro h, apply soundnesshelper, apply h, apply T_helper

end

49

B.0.3 Soundness for System S4

lemma S4_helper : ∀ ϕ ∈ S4_axioms, F_valid ϕ ref_trans_class :=

begin

intros ϕ h1 f h2 v x,

cases h2 with h2l h2r,

cases h1 with h1 h3,

{apply T_helper, exact h1, exact h2l},

{cases h3 with ψ h3, subst h3,

apply trans_helper, exact h2r}

end

theorem S4_soundness (ϕ : form) :

prfK S4_axioms ϕ → global_sem_csq S4_axioms ref_trans_class ϕ :=

begin

intro h, apply soundnesshelper, apply h, apply S4_helper

end

B.0.4 Soundness for System S5

lemma S5_helper : ∀ ϕ ∈ S5_axioms, F_valid ϕ equiv_class :=

begin

intros ϕ h1 f h2 v x,

cases h2 with h2l h2r,

cases h2r with h2r h2rr,

cases h1 with h1 h3,

{apply T_helper, exact h1,

exact h2l},

{cases h3 with ψ h3, dsimp at h3,

subst h3, apply euclid_helper,

intros x y z h1 h2,

exact h2rr (h2r h1) h2}

end

theorem S5_soundness (ϕ : form) :

prfK S5_axioms ϕ → global_sem_csq S5_axioms equiv_class ϕ :=

begin

intro h, apply soundnesshelper, apply h, apply S5_helper

end

50

B.0.5 Completeness for System K

open zorn

lemma lindenbaum (AX Γ : ctx) (hax : ax_consist AX Γ) :

∃ Γ’, max_ax_consist AX Γ’ ∧ Γ ⊆ Γ’ :=

begin

let P := { Γ’’ | Γ’’ ⊇ Γ ∧ ax_consist AX Γ’’},
have h : ∀ c ⊆ P, chain (⊆) c → c.nonempty → ∃ ub ∈ P,

∀ s ∈ c, s ⊆ ub,

{intros c h2 h3 h4, use ∪0(c),
have h5 := lindenhelper c h4 h3,

repeat {split},

cases h4 with Γ’’ h4,

have h6 := set.mem_of_mem_of_subset h4 h2,

cases h6 with h6 h7,

apply set.subset_sUnion_of_subset c Γ’’ h6 h4,

intros L h6,

cases h5 L h6 with m h5,

cases h5 with h7 h5,

cases (set.mem_of_mem_of_subset h7 h2) with h8 h9,

apply h9, exact h5,

intros s h7, exact set.subset_sUnion_of_mem h7},

have h1 : Γ ∈ P,

split, exact set.subset.rfl, exact hax,

cases zorn_subset0 P h Γ h1 with Γ’ h2,

cases h2 with h2 h3, cases h3 with h3 h4,

use Γ’, split, rw max_equiv, split, apply h2.2,

intros m h5 h6, symmetry, apply h4 m, split,

apply set.subset.trans h2.1 h6,

exact h5, exact h6, apply h2.1

end

lemma max_ax_exists (AX : ctx) (hax : sem_cons AX) :

∃ Γ : ctx, max_ax_consist AX Γ :=

begin

have h1 : ax_consist AX ∅,
{intro L, intro h2, rw fin_ax_consist,

have h3 := listempty h2, have this : ∅ = ∅, refl,

specialize h3 this, subst h3, by_contradiction h4,

apply nprfalse AX hax, exact mp dne h4},

have h2 := lindenbaum AX ∅ h1,

cases h2 with Γ h2, cases h2 with h2 h3, existsi (Γ : ctx), apply h2

end

51

lemma existence (AX : ctx) (hax : sem_cons AX)

(xΓ : (canonical AX).states) :

∀ ϕ, ♦ϕ ∈ xΓ.val ↔ ∃ y∆ : (canonical AX).states, ϕ ∈ y∆.val

∧ (canonical AX).rel xΓ y∆ :=

begin

intro ϕ, split, intro h1,

let Γbox : ctx := {ψ : form | �ψ ∈ xΓ.val},
have h1 : ax_consist AX (Γbox ∪ {ϕ}),
{by_contradiction h2, simp at h2,

have h3 := five AX Γbox ϕ h2,

cases h3 with L h3, cases h3 with h3 h4,

have h5 := cut fin_conj_boxn (mp kdist (nec h4)),

have h6 := exercise1,

have h7 : ∀ ψ ∈ (list.map �L), ψ ∈ xΓ.1,
intros ψ h8, simp at *, cases h8 with a h8, cases h8 with h8l h8r,

subst h8r, exact h3 a h8l, specialize h6 xΓ.2 h7 h5,

have h8 := (six AX xΓ.1 (max_imp_ax xΓ.2)).mp xΓ.2 (¬ϕ).box,
cases h8 with h8l h8r, simp at *,

exact absurd h1 (h8r h6)},

have h2 := lindenbaum AX (Γbox ∪ {ϕ}) h1,

cases h2 with ∆ h2, cases h2 with h2 h3,

let x∆ : (canonical AX).states := 〈∆, h2〉,
existsi (x∆ : (canonical AX).states),

have h5 := set.union_subset_iff.mp h3,

cases h5, split, simp at h5_right, exact h5_right,

have h3 : ∀ ϕ : form, �ϕ ∈ xΓ.val → ϕ ∈ x∆.val,

intros ψ h4, apply h5_left, exact h4, exact h3,

simp at *, intros y∆ h1 h2, by_contradiction h3,

have h4 := (max_notiff AX xΓ.1 xΓ.2 (♦ϕ)).mp h3,

have h5 := (max_dn AX xΓ.1 xΓ.2 (�¬ϕ)).mpr h4,

have h6 := (max_notiff AX y∆.1 y∆.2 ϕ).mpr (h2 (¬ϕ) h5),

exact absurd h1 h6

end

lemma truth (AX : ctx) (hax : sem_cons AX) (xΓ : (canonical AX).states) :

∀ ϕ, forces (canonical AX) (val_canonical AX) xΓ ϕ↔ (ϕ ∈ xΓ.val) :=

begin

intro ϕ, induction ϕ generalizing xΓ,
split, intro h1, exact false.elim h1,

intro h1,

have h2 := xΓ.2,
cases h2,

specialize h2_left [⊥],
simp at *,

exact absurd not_contra (h2_left h1),

52

repeat {rw forces, rw val_canonical},

split, intro h1, cases h1 with h1 h2,

exact max_conj_1 xΓ.2 (and.intro ((ih_ϕ xΓ).mp h1) ((ih_ψ xΓ).mp h2)),

intro h1, split,

apply (ih_ϕ xΓ).mpr, exact max_conj_2 xΓ.2 h1,

apply (ih_ψ xΓ).mpr, exact max_conj_3 xΓ.2 h1,

split,

intro h1,

apply max_imp_1 xΓ.2,
intro h2,

exact (ih_ψ xΓ).mp (h1 ((ih_ϕ xΓ).mpr h2)),

intros h1 h2,

apply (ih_ψ xΓ).mpr,
exact max_imp_2 xΓ.2 h1 ((ih_ϕ xΓ).mp h2),

split, intros h1,

by_contradiction h2,

have h4 := (existence AX hax xΓ (¬ϕ)).mp,
have h5 := max_boxdn AX xΓ.1 xΓ.2 ϕ
((max_notiff AX xΓ.1 xΓ.2 ϕ.box).mp h2),

cases h4 h5 with x∆ h4, cases h4 with h4 h6,

have h7 := max_notiff AX x∆.1 x∆.2 ϕ,
cases h7 with h7l h7r,

exact absurd ((ih_ϕ x∆).mp (h1 x∆ h6)) (h7r h4),

intros h1 x∆ h2,

apply (ih_ϕ x∆).mpr, exact h2 ϕ h1,

end

theorem completeness (AX : ctx) (hax : sem_cons AX) (ϕ : form) :

global_sem_csq AX all_class ϕ→ prfK AX ϕ :=

begin

rw ← not_imp_not, intro h1,

have h2 := comphelper AX ϕ hax h1,

have h3 := lindenbaum AX {¬ϕ} h2,

simp at *,

cases h3 with Γ’ h3, cases h3 with h3 h4,

rw global_sem_csq,

push_neg,

let f := canonical, use f AX,

split,

trivial,

let v := val_canonical, use v AX,

let xΓ’ : (f AX).states := 〈Γ’, h3〉,
split,

exact forcesAX AX hax,

use xΓ’,

53

have h5 := truth AX hax xΓ’ ¬ϕ,
cases h5 with h5 h6,

have h7 := not_forces_imp (f AX) (v AX) xΓ’ ϕ,
cases h7 with h7 h8, apply h8, apply h6, exact h4

end

54

B.0.6 Completeness for System T

lemma T_reflexive : T_canonical ∈ ref_class :=

begin

intros x ϕ h1,

have h2 : (∀ ψ ∈ [�ϕ], ψ ∈ x.1) →
prfK T_axioms (fin_conj [�ϕ] ⊃ ϕ) → ϕ ∈ x.1,

from exercise1 x.2, simp at *,

have h3 : prfK T_axioms (fin_conj [�ϕ] ⊃ ϕ),
{repeat {rw fin_conj},

have h4 : prfK T_axioms (�ϕ ⊃ ϕ),
{refine ax _, rw T_axioms, simp},

exact cut (mp pl5 phi_and_true) h4},

exact h2 h1 h3

end

theorem T_completeness (ϕ : form) :

global_sem_csq T_axioms ref_class ϕ→ prfK T_axioms ϕ :=

begin

rw ←not_imp_not,

intro h1,

rw global_sem_csq,

push_neg,

let f := T_canonical, use f,

split,

exact T_reflexive,

let v := val_canonical, use (@v T_axioms sem_consT),

split,

exact forcesAX T_axioms sem_consT,

have h4 := lindenbaum T_axioms {¬ϕ} (comphelper T_axioms ϕ sem_consT h1),

simp at *,

cases h4 with Γ’ h4, cases h4 with h4 h5,

let xΓ : f.states := 〈Γ’, h4〉,
use xΓ,
have h6 := truth T_axioms sem_consT xΓ ¬ϕ,
cases h6 with h6 h7,

have h8 := not_forces_imp f (@v T_axioms sem_consT) xΓ ϕ,
cases h8 with h8 h9, apply h9, apply h7, exact h5

end

55

B.0.7 Completeness for System S4

lemma S4_reftrans : S4_canonical ∈ ref_trans_class :=

begin

split,

intros x ϕ h1,

have h2 : (∀ ψ ∈ [�ϕ], ψ ∈ x.1) →
prfK TS4_axioms (fin_conj [�ϕ] ⊃ ϕ) → ϕ ∈ x.1,

from exercise1 x.2, simp at *,

have h3 : prfK S4_axioms (fin_conj [�ϕ] ⊃ ϕ),
{repeat {rw fin_conj},

have h4 : prfK S4_axioms (�ϕ ⊃ ϕ),
{refine ax _, rw S4_axioms, simp, rw T_axioms, simp},

exact cut (mp pl5 phi_and_true) h4},

exact h2 h1 h3,

intros x y z h1 h2 ϕ h3, apply h2 ϕ,
apply h1 (�ϕ),
have h4 : prfK S4_axioms (fin_conj [�ϕ] ⊃ ��ϕ),
{repeat {rw fin_conj},

have h5 : prfK S4_axioms (�ϕ ⊃ ��ϕ),
{refine ax _, rw S4_axioms, simp},

exact cut (mp pl5 phi_and_true) h5},

have h6 : (∀ ψ ∈ [�ϕ], ψ ∈ x.1) →
prfK S4_axioms (fin_conj [�ϕ] ⊃ ��ϕ) → (��ϕ) ∈ x.1,

from exercise1 x.2, simp at *,

exact h6 h3 h4

end

theorem S4_completeness (ϕ : form) :

global_sem_csq S4_axioms ref_trans_class ϕ→ prfK S4_axioms ϕ :=

begin

rw ←not_imp_not, intro h1, rw global_sem_csq, push_neg,

let f := S4_canonical, use f,

split, exact S4_reftrans,

let v := val_canonical, use (@v S4_axioms sem_consS4),

split, exact forcesAX S4_axioms sem_consS4,

have h4 := lindenbaum S4_axioms {¬ϕ} (comphelper S4_axioms ϕ sem_consS4 h1),

simp at *, cases h4 with Γ’ h4, cases h4 with h4 h5,

let xΓ : f.states := 〈Γ’, h4〉, use xΓ,
have h6 := truth S4_axioms sem_consS4 xΓ ¬ϕ,
cases h6 with h6 h7,

have h8 := not_forces_imp f (@v S4_axioms sem_consS4) xΓ ϕ,
cases h8 with h8 h9, apply h9, apply h7, exact h5

end

56

B.0.8 Completeness for System S5

lemma S5_equiv : S5_canonical ∈ equiv_class :=

begin

rw equiv_ref_euclid, split, intros x ϕ h1,

have h2 : (∀ ψ ∈ [�ϕ], ψ ∈ x.1) →
prfK TS4_axioms (fin_conj [�ϕ] ⊃ ϕ) → ϕ ∈ x.1,

from exercise1 x.2, simp at *,

have h3 : prfK S5_axioms (fin_conj [�ϕ] ⊃ ϕ),
{repeat {rw fin_conj},

have h4 : prfK S5_axioms (�ϕ ⊃ ϕ),
{refine ax _, rw S5_axioms, simp, rw T_axioms, simp},

exact cut (mp pl5 phi_and_true) h4},

exact h2 h1 h3, intros x y z h1 h2 ϕ h3, apply h2 ϕ, clear h2,

have h2 : prfK S5_axioms (♦(¬ϕ) ⊃ �(♦¬ϕ)),
{refine ax _, rw S5_axioms, simp},

have h4 : prfK S5_axioms (♦(�ϕ) ⊃ �ϕ),
from mp euclid_dual h2,

have h5 : (∀ ψ ∈ [♦(�ϕ)], ψ ∈ x.1) →
prfK S5_axioms (fin_conj [♦(�ϕ)] ⊃ �ϕ) → �ϕ ∈ x.1,

from exercise1 x.2, simp at *,

apply h5, by_contradiction h6,

have h7 := (max_notiff S5_axioms x.1 x.2 (¬(¬ϕ.box).box)).mp h6,

have h8 := (max_dn S5_axioms x.1 x.2 ((¬ϕ.box).box)).mpr h7,

have h9 := (max_notiff S5_axioms y.1 y.2 (ϕ.box)).mpr (h1 (¬ϕ.box) h8),

exact absurd h3 h9,

exact (cut (mp pl5 phi_and_true) h4)

end

theorem S5_completeness (ϕ : form) :

global_sem_csq S5_axioms equiv_class ϕ→ prfK S5_axioms ϕ :=

begin

rw ←not_imp_not, intro h1, rw global_sem_csq, push_neg,

let f := S5_canonical, use f, split, exact S5_equiv,

let v := val_canonical, use (@v S5_axioms sem_consS5),

split, exact forcesAX S5_axioms sem_consS5,

have h4 := lindenbaum S5_axioms {¬ϕ}
(comphelper S5_axioms ϕ sem_consS5 h1),

simp at *, cases h4 with Γ’ h4, cases h4 with h4 h5,

let xΓ : f.states := 〈Γ’, h4〉, use xΓ,
have h6 := truth S5_axioms sem_consS5 xΓ ¬ϕ,
cases h6 with h6 h7,

have h8 := not_forces_imp f (@v S5_axioms sem_consS5) xΓ ϕ,
cases h8 with h8 h9, apply h9, apply h7, exact h5

end

57

Appendix C

Dynamic Epistemic Logic Proofs

C.0.1 Soundness for System S5 (Epistemic Logic)

theorem soundnessS5 {Γ : ctx agents} {ϕ : form agents} :

prfS5 Γ ϕ → global_sem_csq Γ equiv_class ϕ :=

begin

intros h1 f h2 v h3 x,

induction h1 generalizing x,

{exact h3 ϕ x h1},

{intros h4 h5, exact h4},

{intros h4 h5 h6, exact (h4 h6) (h5 h6)},

{intros h1 h4, by_contradiction h5, exact (h1 h5) (h4 h5)},

{intros h4 h5, exact and.intro h4 h5},

{intros h4, exact h4.left},

{intros h4, exact h4.right},

{intros h1 h4, repeat {rw forces at h1}, repeat {rw imp_false at h1},

rw not_imp_not at h1, exact h1 h4},

{intros h3 h4, simp [forces] at *, intros x’ h5, exact (h3 x’ h5) (h4 x’ h5)},

{intros h1, apply h1, exact (h2 a).left x},

{intros h1 y h4 z h5, apply h1 z,

cases h2 a with h2l h2r, cases h2r with h2r h2rr, exact h2rr h4 h5},

{intros h1 y h5 h4, apply h1, intros z h6, apply h4 z,

cases h2 a with h2l h2r, cases h2r with h2r h2rr, exact h2rr (h2r h5) h6},

{exact ih_hpq h3 x (ih_hp h3 x)},

{intros y h1, exact ih h3 y}

end

58

C.0.2 Soundness for System PA (Public Announcement Logic)

theorem soundnessPA {Γ : ctxPA agents} {ϕ : formPA agents} :

prfPA Γ ϕ → global_sem_csqPA Γ equiv_class ϕ :=

begin

intros h1 f h2 v h3 x,

induction h1 generalizing x,

{exact h3 ϕ x h1},

{intros h4 h5, exact h4},

{intros h4 h5 h6, exact (h4 h6) (h5 h6)},

{intros h1 h4, by_contradiction h5, exact (h1 h5) (h4 h5)},

{intros h4 h5, exact and.intro h4 h5},

{intros h4, exact h4.left},

{intros h4, exact h4.right},

{intros h1 h4, repeat {rw forcesPA at h1}, repeat {rw imp_false at h1},

rw not_imp_not at h1, exact h1 h4},

{intros h3 h4, simp [forcesPA] at *, intros x’ h5, exact (h3 x’ h5) (h4 x’ h5)},

{intros h1, apply h1, exact (h2 a).left x},

{intros h1 y h4 z h5, apply h1 z,

cases h2 a with h2l h2r, cases h2r with h2r h2rr, exact h2rr h4 h5},

{intros h1 y h5 h4, apply h1, intros z h6, apply h4 z,

cases h2 a with h2l h2r, cases h2r with h2r h2rr, exact h2rr (h2r h5) h6},

{exact ih_hpq h3 x (ih_hp h3 x)},

{intros y h1, exact ih h3 y},

{split, repeat {intros h1 h4, apply h1 h4}},

{split, rw forcesPA, rw public_announce_var, intro h1, exact h1,

intro h1, rw public_announce_var, exact h1},

{split, rw forcesPA, rw public_announce_neg, intro h1, exact h1,

intro h1, rw public_announce_neg, exact h1},

{split, rw forcesPA, rw public_announce_conj, intro h1, exact h1,

intro h1, rw public_announce_conj, exact h1},

{split, rw forcesPA, rw public_announce_imp, intro h1, exact h1,

intro h1, rw public_announce_imp, exact h1},

{split, rw forcesPA, rw public_announce_know, intro h1, exact h1,

intro h1, rw public_announce_know, exact h1},

{split, intro h1, rw compositionPA.public_announce_comp,

exact h1, intro h1, rw compositionPA.public_announce_comp at h1, exact h1}

end

59

C.0.3 Completeness for System S5 (Epistemic Logic)

theorem completenessS5 (hax : sem_cons (∅ : ctx agents) equiv_class)

(ϕ : form agents) : global_sem_csq ∅ equiv_class ϕ → prfS5 ∅ ϕ :=

begin

rw ←not_imp_not, intro h1,

have h2 := comphelper ϕ hax h1,

have h3 := lindenbaum {¬ϕ} h2,

simp at *,

cases h3 with Γ’ h3, cases h3 with h3 h4,

rw global_sem_csq,

push_neg,

let f := canonical,

use f,

let v := val_canonical,

split,

exact S5_equiv hax,

use v,

let xΓ’ : f.states := 〈Γ’, h3〉,
split,

exact forcesAX hax,

use xΓ’,
have h5 : forces f v xΓ’ (¬ϕ) ↔ ((¬ϕ) ∈ xΓ’.val),

from truth hax xΓ’ ¬ϕ,
cases h5 with h5 h6,

have h7 : ¬forces f v xΓ’ ϕ ↔ forces f v xΓ’ ¬ϕ,
from not_forces_imp f v xΓ’ ϕ,

cases h7 with h7 h8, apply h8, apply h6, exact h4

end

60

C.0.4 Completeness for System PA (Public Announcement Logic)

theorem equiv_translation_aux’ {Γ : ctxPA agents} (n : nat) (ϕ : formPA agents)

(h : complexity ϕ ≤ n) : prfPA Γ (ϕ ↔ to_PA (translate ϕ)) :=

begin

simp at *,

induction n with n ih generalizing ϕ,
{ have h1 : complexity ϕ > 0, from comp_gt_zero, linarith},

cases ϕ,
case formPA.bot

{ exact mp (mp pl4 iden) iden },

case formPA.var : m

{ exact mp (mp pl4 iden) iden },

case formPA.and : ϕ ψ
{ rw translate,

exact iff_iff_and_iff (ih ϕ (compand1 h)) (ih φ (compand2 h))

},

case formPA.impl : ϕ ψ
{ rw translate,

repeat {rw to_PA},

exact iff_iff_imp_iff (ih ϕ (compimp1 h)) (ih ψ (compimp2 h))

},

case formPA.box : a ϕ
{ simp at *,

have h1 : complexity ϕ ≤ n,

from nat.lt_succ_iff.mp (nat.one_add_le_iff.mp h),

exact iff_k_dist (ih ϕ h1),

},

case formPA.update : ϕ ψ
{ cases ψ,

case formPA.bot

{ repeat {rw translate},

repeat {rw complexity at h},

have h1 : complexity ϕ ≤ n,

{have : complexity ϕ + 1 ≤ nat.succ n, linarith,

exact nat.lt_succ_iff.mp this},

have h2 := atomicbot,

exact update_iff1 (ih ϕ h1) h2

},

case formPA.var : m

{ repeat {rw translate},

repeat {rw complexity at h},

have h1 : complexity ϕ ≤ n,

{have : complexity ϕ + 1 ≤ nat.succ n, linarith,

exact nat.lt_succ_iff.mp this},

61

have h2 := atomicperm,

exact update_iff1 (ih ϕ h1) h2

},

case formPA.and : ψ χ
{ repeat {rw translate},

exact update_iff2 (ih (U ϕ ψ) (updatecompand1 h)) (ih (U ϕ χ)
(updatecompand2 h)) announceconj,

},

case formPA.impl : ψ χ
{ repeat {rw translate},

exact update_iff3 (ih (U ϕ ψ) (updatecompimp1 h)) (ih (U ϕ χ)
(updatecompimp2 h)) announceimp,

},

case formPA.box : a ψ
{ repeat {rw translate},

exact update_iff4 announceknow (ih (ϕ ⊇ K a (U ϕ ψ))
(updatecompknow2 h))

},

case formPA.update : ψ χ
{ rw translate,

exact update_iff5 announcecomp (ih (U (ϕ & (U ϕ ψ)) χ)
(updatecompupdate h))

}

}

end

theorem equiv_translation (Γ : ctxPA agents) :

∀ ϕ : formPA agents, prfPA Γ (ϕ ↔ to_PA (translate ϕ)) :=

begin

intro ϕ,
have h : complexity ϕ ≤ complexity ϕ + 1, linarith,

simp,

exact equiv_translation_aux (complexity ϕ + 1) ϕ h

end

62

theorem completenessPA {ϕ : formPA agents} (Γ : ctxPA agents) :

global_sem_csqPA ∅ equiv_class ϕ→ prfPA ∅ ϕ :=

begin

intros h1,

have h2 := mp pl5 (equiv_translation ∅ ϕ),
have h3 := soundnessPA,

have h4 : global_sem_csqPA ∅ equiv_class (to_PA (translate ϕ)),
{intros f h4 v h5 x, exact h3 h2 f h4 v h5 x (h1 f h4 v h5 x)},

have h5 := (global_sem_csqPA_iff_global_sem_csq equiv_class (translate ϕ)).mp h4,

have h6 := canonical.completenessS5 sem_consS5 (translate ϕ),
have h7 := to_prfPA (h6 h5),

simp at *, exact mp (mp pl6 (equiv_translation ∅ ϕ)) h7

end

63

